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Abstract

In this thesis we study incidence structures that are related to difference sets and almost dif-

ference sets. We first discuss t-adesigns, which were coined by Cunsheng Ding in “Codes from

Difference Sets” (2015). It is clear that 2-adesigns are partially balanced incomplete block designs

which naturally arise in many combinatorial and statistical problems. We discuss some of their

basic properties and give several constructions of 2-adesigns (some of which correspond to new

almost difference sets and some to new almost difference families), as well as two constructions of

3-adesigns. We discuss basic properties of the incidence matrices and make an initial investigation

into the codes which they generate. We find that many of the codes have good parameters in the

sense they are optimal or have relatively high minimum distance. We then turn our discussion to

partial geometric difference sets which were coined by Oktay Olmez in “Symmetric 11
2
-Designs

and 11
2
-Difference Sets” (2012), and partial geometric difference families, which were coined by

Kathleen Nowak et al. in “Partial Geometric Difference Families” (2014). Using Galois rings and

Galois fields, we construct several infinite classes of partial geometric difference sets, and partial

geometric difference families, with new parameters. Furthermore, these partial geometric differ-

ence sets (and partial geometric difference families) correspond to new infinite families of directed

strongly regular graphs. We also discuss some of the links between partially balanced designs,

2-adesigns and partial geometric designs, and make an investigation into when a 2-adesign is a

partial geometric design.

3



888 ggg

Dedication .................................................................................................................................... 1

Acknowledgement ....................................................................................................................... 2

Abstract ........................................................................................................................................ 3

8g

Chapter 1. General Overview and Introduction....................................................................... 6

Chapter 2. Preliminaries .......................................................................................................... 8

0.1 Incidence Structures and Partial Geometric Designs.................................................. 8

0.2 Difference Sets and Almost Difference Sets............................................................... 8

0.3 Partial Geometric Difference Sets and Partial Geometric Difference Families.......... 10

0.4 Strongly Regular Graphs and Digraphs ...................................................................... 11

0.5 Linear Codes ............................................................................................................... 12

0.6 Group Ring Notation .................................................................................................. 12

0.7 Cyclotomic Classes and Cyclotomic Numbers........................................................... 13

Chapter 3. Adesigns................................................................................................................. 14

0.8 Introduction................................................................................................................. 14

0.9 Constructions of 2-adesigns from Quadratic Residues............................................... 15

0.10 Constructions of 2-adesigns that are Almost Difference Families ............................. 22

0.11 Constructions of 2-adesigns from Symmetric Designs............................................... 25

0.12 Constructions of 3-adesigns........................................................................................ 28

0.13 Related Codes ............................................................................................................. 31

0.13.1 Cyclic Codes.................................................................................................... 31

0.13.2 Known Results on Cyclic Codes from 2-adesigns .......................................... 31

0.13.3 Cyclic Codes from Sets with Two Difference Levels ..................................... 32

0.13.4 Noncyclic Codes from Adesigns ..................................................................... 34

0.14 Closing Remarks......................................................................................................... 36

4



úô�ÆÆ¬Æ Ø© 8 g

Chapter 4. Partial Geometric Difference Families................................................................... 37

0.15 Introduction................................................................................................................. 37

0.16 New Partial Geometric Difference Sets ...................................................................... 37

0.17 New Partial Geometric Difference Families ............................................................... 44

0.18 Partial Geometric Designs, Adesigns, and Their Links.............................................. 50

0.19 Concluding Remarks................................................................................................... 53

ë�©z ..................................................................................................................................... 54

Publications.................................................................................................................................. 59

5



Chapter 1. General Overview and Introduction

In this chapter we give a brief history of the theory of combinatorial designs and related

combinatorial objects. We then give a brief explanation of our motivations as well as an overview

of the thesis.

The conception of combinatorial designs lies in the work of Fisher and Yates in the 1930’s

[27], [51]. Combinatorial designs have an important impact on coding theory and graph theo-

ry. For instance, Delsarte’s thesis presented many powerful uses of combinatorial designs toward

coding theory and graph theory [15]. Combinatorial designs have extensive applications in many

fields, including finite geometry [16], [30], design of experiments [9], [28], cryptography [13],

[47], and authentication codes and secret sharing schemes [40], [47].

A design is a pair (X,A) where X is a set of elements called points, andA is a collection (i.e.

a multiset) of nonempty subsets of X called blocks. If v, k, λ and t are positive integers such that

v ≥ k ≥ 2, and t ≥ 1, a t− (v, k, λ) design is a design (X,A) where |X| = v, each block contains

exactly k points, and every t-subset of points of X is contained in exactly λ blocks. A 2− (v, k, λ)

design if often referred to as a (v, k, λ) balanced incomplete block design, or a (v, k, λ)-BIBD.

Further reading on combinatorial designs can be found in [6], [12] and [47].

Difference sets are a powerful tool for obtaining new disigns. If G is an (additive) group of

order v, let k and λ be integers such that v > k ≥ 2. Then a (v, k, λ) difference set in G is a subset

D ⊆ G such that |D| = k, and the multiset [x− y | x, y ∈ D, x 6= y] contains every element in

G \ {0} exactly λ times. The use of cyclic difference sets and methods for the construction of

symmetric block designs date back to R. C. Bose and his seminal paper in 1939 [5]. Further

reading on difference sets can be found in [21], [32] and [36].

One generalization of the difference set is the almost difference set. Two different types of

almost difference sets were introduced by Davis (1992) [14] and Ding (1994) [18]. The definition

we will use is a unified version of the two formulated by Ding et al. in 2001 [22]. If G is

an (additive) group of order v, let k, λ and t be integers such that v > k ≥ 2 and t ≥ 1. A

6
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(v, k, λ, t) almost difference set in G is a subset D ⊆ G such that |D| = k and the multiset

[x− y | x, y ∈ D, x 6= y] contains t elements of G \ {0} exactly λ times, and v − t − 1 elements

exactly λ+1 times. Further reading on almost difference sets can be found in [21], [23] and [38].

Difference sets [32] and almost difference sets [38] also have applications in many areas such as

digital communications [22], [54], sequence design [48], [52], and CDMA and cryptography

[13].

Recently, several generalizations of combinatorial designs related to difference sets and al-

most difference sets have been introduced and shown to be applicable to coding theory and graph

theory. Ding and Yin, in 2008, introduced the almost difference family. Constructions and appli-

cations of almost difference families can be found in [24] and [49]. Ding, in 2015, coined the

t-adesign (or t-almost design). Constructions of t-adesigns and applications to coding theory can

be found in [21], [24] and [35].

Olmez, in 2013, introduced the partial geometric difference set. These give a way of con-

structing new partial geometric designs, which are geometric objects coined by Bose et al. in 1976

[8] and studied further by Neumaier in 1980 [37]. It is clear that partial geometric designs have

several applications in graph theory, coding theory and cryptography [7], [9], [41], [43]. It was

shown by Brouwer et al. in [9] that directed strongly regular graphs can be obtained from partial

geometric designs. In [43], Olmez showed that certain partial geometric difference sets can be

used to construct plateaued functions. Constructions of new partial geometric designs from sym-

plectic geometry over finite fields were given by Z. Chai et al. in [11] (also see [53]). Nowak et

al., in 2014, introduced the partial geometric difference family. Constructions and applications to

graph theory can be found in [34] and [39].

This dissertation will provide new constructions of t-adesigns and discuss the parameters of

their related codes. We will also give new constructions of partial geometric difference sets and

partial geometric difference families as well as discuss their associated graphs, all of which are

directed strongly regular graphs with new parameters.

The organization of this dissertation is as follows. In Chapter 2, we give preliminary facts

and definitions on the theory of finite incidence structures, difference sets, linear codes, strongly

regular graphs and directed strongly regular graphs. In Chapter 3 we discuss t-adesigns and give

several new constructions as well as an investigation of their related codes. In Chapter 4 we discuss

partial geometric difference sets and partial geometric difference families and give several new

constructions. We also give a discussion of their associated directed strongly regular graphs.
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Chapter 2. Preliminaries

0.1 Incidence Structures and Partial Geometric Designs

An incidence structure is a pair (V,B) where V is a finite set of points and B is a finite set of

blocks composed of points of V . For a given point u ∈ V , its replication number is the number of

blocks of B in which it occurs, and is denoted by ru. Given two distinct points u,w ∈ V , their index

is the number of blocks in which they occur together, and is denoted ruw. A tactical configuration

is an incidence structure (V,B) where the cardinalities of blocks in B and the replication numbers

of points in V are both constant.

Let (V,B) be a tactical configuration where |V | = v, each block has cardinality k, and each

point has replication number r. We call a member (u,B) of V ×B a flag if u ∈ B, and an antiflag

if u /∈ B. For each point u ∈ V and each block B ∈ B, let s(u,B) denote the number of flags

(w,C) ∈ V × B such that w ∈ B \ {u}, u ∈ C and C 6= B. If there are integers α′ and β′ such

that

s(u,B) =

α
′, if u /∈ B,

β′, if u ∈ B,

as (u,B) runs over V × B, then we say that (V,B) is a partial geometric design with parameters

(v, k, r;α′, β′).

0.2 Difference Sets and Almost Difference Sets

Let G be a finite additive group with identity 0. Let k and λ be positive integers such that

2 ≤ k < v. A (v, k, λ) difference set in G is a subset D ⊆ G that satisfies the following properties:

• |D| = k,

• the multiset {x− y | x, y ∈ D, x 6= y} contains every member of G \ {0} exactly λ times.
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Almost difference sets are a generalization of difference sets. A (v, k, λ, t) almost difference set in

G is a subset D ⊆ G that satisfies the following properties:

• |D| = k,

• the multiset {x− y | x, y ∈ D, x 6= y} contains t members of G \ {0} which appear λ times

and v − 1− t members of G \ {0} which appear λ+ 1 times.

Let G be an additive group of order v. A k-element subset D ⊆ G has difference levels

µ1 < · · · < µs if there exist integers t1, ..., ts such that the multiset

M = {g − h | g, h ∈ D}

contains exactly ti members ofG\{0} each with multiplicity µi for all i, 1 ≤ i ≤ s. We will denote

the ti members of the multiset M with multiplicity µi by Ti. Note that the Ti’s form a partition of

G \ {0}. It is easy to see that in the case where s = 1, D is a difference set [32], and in the case

where s = 2 and µ2 = µ1 + 1, D is an almost difference set [38]. In this correspondence we are

concerned only with those structures having two difference levels, and all groups are assumed to be

additive. The basic equation describing a k-element subset D ⊆ G with difference levels µ1 < µ2

is given by

µ1t+ µ2(v − 1− t) = k(k − 1). (0-1)

Let V be a v-set and B a collection of subsets of V , called blocks, each having cardinality k.

If there are positive integers µ1 < µ2 such that every subset of V of cardinality t is incident with

exactly µi blocks for i = 1 or 2, and for each i, i = 1, 2, there exists a subset of V of cardinality t

that is incident with exactly µi blocks, then we say that the incidence structure (V,B) has t-levels

µ1 < µ2. We denote |B| by b. An incidence structure (V,B) is called symmetric if b = v. In the

case where s = 2, (V,B) is a partially balanced incomplete block design, and if µ2 = µ1 + 1, we

call (V,B) a t-(v, k, µ1) adesign (or simply a t-adesign), which was coined by Ding in [21]. It is

easy to see that in the case where s = 1, (V,B) is simply a t-design [47].

We call the set {D + g | g ∈ G} of translates of D, denoted by Dev(D), the development of

D. We have the following lemmas whose proofs are omitted as they are simple counting exercises.

Lemma 0.2.1. LetD be a (v, k, λ) almost difference set in an Abelian groupG. Then (G,Dev(D))

is a 2-(v, k, λ) adesign.
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Let (V,B) be an incidence structure with t-levels µ1 < µ2. Let A be a v by b matrix whose

rows and columns are indexed by points and blocks respectively and whose (i, j)-th entry is 1 if the

point corresponding to the ith row is incident with the block corresponding to the jth row, and 0

otherwise. We call A the incidence matrix of (V,B). We will denote the n× n identity and all-one

matrices by In and Jn respectively, or, when it is clear from the context, simply by I and J .

Lemma 0.2.2. Let D be a k-subset of an Abelian group G of cardinality v with the two differ-

ence levels µ1 < µ2. Let A be the v × v incidence matrix of the symmetric incidence structure

(G,Dev(D)). Then

ATA = AAT = kI + µ1A1 + µ2(J − A− I). (0-2)

0.3 Partial Geometric Difference Sets and Partial Geometric Difference Fam-

ilies

Let G be a finite (additive) Abelian group and S ⊂ G. Let ∆(S) denote the multiset {x− y |

x, y ∈ S}. For a family S = {S1, ..., Sn} of subsets of G, we let ∆(S) denote the multiset union⊔n
i=1 ∆(Si). For a subset S ⊂ G we let δS(z) denote |{(x, y) ∈ S × S | z = x− y}|. For a family

S = {S1, ..., Sn} of subsets of G we let δSi
(z) denote |{(x, y) ∈ Si × Si | z = x− y}|.

Let v, k and n be integers with v > k > 2. Let G be a group of order v. Let S = {S1, ..., Sn}

be a collection of distinct k-subsets of G. If there are constants α, β such that for each x ∈ G and

each i ∈ {1, ..., n}, ∑
y∈Si

n∑
i=1

δSi
(x− y) =

α, if x /∈ Si,

β, if x ∈ Si,

then we say S is a partial geometric difference family with parameters (v, k, n;α, β). For details

on the relationship between partial geometric difference families and difference families the reader

is referred to [39]. When n = 1 and S = {S}, we simply say that S is a partial geometric differ-

ence set with parameters are (v, k;α, β). For details on the relationship between partial geometric

difference sets and difference sets the reader is referred to [42].

Again let G be a group and S = {S1, ..., Sn} a collection of distinct k-subsets of G. We call

the multiset union of translates
⊔n
i=1{Si + g | g ∈ G} the development of S, and denote it by

Dev(S). By the proof of Theorem 3 in [39] we have the following.

10
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Theorem 0.3.1. Let S = {S1, ..., Sn} be a collection of distinct k-subsets of a group G of order v.

If S is a partial geometric difference family with parameters (v, k, n;α, β), then (G,Dev(S)) is a

partial geometric design with parameters (v, k, kn;α′, β′) where α′ =
∑

y∈Si

∑n
i=1 δSi

(x− y) for

x /∈ Si, and β′ =
∑

y∈Si\{x}
∑n

i=1(δSi
(x− y)− 1) for x ∈ Si (see Remark 0.3.1).

Remark 0.3.1. The parameters for the corresponding partial geometric designs seem to disagree

in Lemma 2.4 of [42] and Theorem 3 of [39]. To see this, the reader should compare Definition

2.2 of [42] to Definition 1 of [39].

0.4 Strongly Regular Graphs and Digraphs

For a more detailed introduction to directed strongly regular graphs the reader is referred

to [41] and [33]. In this paper all graphs are assumed to be loopless and simple. Let Γ be an

undirected graph with v vertices. Let A denote the adjacency matrix of Γ. Then Γ is called a

strongly regular graph with parameters (v, k, λ, µ) if

A2 = kI + λA+ µ(J − I − A) and AJ = JA = kJ.

A directed graph Γ with adjacency matrix A is said to be a directed strongly regular graph with

parameters (v, k, t, λ, µ) if

A2 = tI + λA+ µ(J − I − A) and AJ = JA = kJ.

The following theorems were proved in [9].

Theorem 0.4.1. Let (V,B) be a tactical configuration, and let Γ be the directed graphs with vertex

set

V = {(u,B) ∈ V × B | u /∈ B}

and adjacency given by

(u,B)→ (w,C) if and only if u ∈ C.

Then Γ is directed strongly regular if and only if (V,B) is a partial geometric design.

11
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Theorem 0.4.2. Let (V,B) be a tactical configuration, and let Γ be the directed graphs with vertex

set

V = {(u,B) ∈ V × B | u ∈ B}

and adjacency given by

(u,B)→ (w,C) if and only if (u,B) 6= (w,C) and u ∈ C.

Then Γ is directed strongly regular if and only if (V,B) is a partial geometric design.

0.5 Linear Codes

A linear binary code C of length n and dimension k (or simply an [n, k] code), is a k-

dimensional linear subspace of the n-dimensional binary vector space Fn2 . The dual C⊥ of an

[n, k] code C is the [n, n− k] code that is the orthogonal space of C with respect to the inner

product of the binary field. Any basis of C is called a generator matrix of C, and any basis of C⊥

is called a parity check matrix of C. The Hamming distance between two vectors x = (x1, ..., xn)

and y = (y1, ..., yn) is the number of indices i such that xi 6= yi. The Hamming weight of a vector

is the number of its nonzero coordinates. The minimum distance d of a code is smallest possible

distance between pairs of distinct codewords. An [n, k] code C is self-orthogonal if C ⊆ C⊥.

An [n, k] code C is optimal if, given its length and dimension, has the largest possible minimum

distance. The best codes for a given length and dimension can be found in the code tables in [29].

0.6 Group Ring Notation

For any finite groupG the group ring Z [G] is defined as the set of all formal sums of elements

of G, with coefficients in Z. The operations “+” and “·” on Z [G] are given by∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

and (∑
g∈G

agg

)(∑
h∈G

bhh

)
=
∑
g,h∈G

agbh(g + h).

where are ag, bg ∈ Z.

The group ring Z [G] is a ring with multiplicative identity 1 = Id, where Id is the identity

element of G, and for any subset X ⊂ G, we denote by X the sum
∑

x∈X x, and we denote by

X−1 the sum
∑

x∈X(−x).

12
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0.7 Cyclotomic Classes and Cyclotomic Numbers

Let q be a prime power, and γ a primitive element of Fq2 . The cyclotomic classes of order e

are given by Ce
i = γi〈γe〉 for i = 0, 1, ..., e− 1. Define (i, j)e = |Ce

i ∩ (Ce
j + 1)|. It is easy to see

there are at most e2 different cyclotomic numbers of order e. When it is clear from the context, we

simply denote (i, j)e by (i, j). We will need the following lemma.

Lemma 0.7.1. [38] Let q = ef + 1 be a prime power for some positive integers e and f . In the

group ring Z [Fq] we have

Ce
iC

e
j = aij1 +

e−1∑
k=0

(j − i, k − i)eCe
k

where

aij =


f, if m is even and j = i,

f, if m is odd and j = i+ e
2
,

0, otherwise.

13



Chapter 3. Adesigns

0.8 Introduction

We will assume some familiarity with combinatorial design theory. A t-(v, k, λ) design (with

v > k > t > 0) is an incidence structure (V,B) where V is a set of v points and B is a collection of

k-subsets of V (called blocks), such that any t-subset of V is contained in exactly λ blocks. When

t = 2, a t-design is sometimes referred to as a balanced incomplete block design. Denoting the

number of blocks by b and the number of blocks containing a given point by r, the identities

bk = vr

and

r(k − 1) = (v − 1)λ

restrict the possible parameter sets. A t-(v, k, λ) design in which b = v and r = k is called

symmetric, and any two blocks meet in λ points. A t-(v, k, λ) design is called quasi-symmetric if

there are exactly two intersection numbers among pairs of blocks. The dual (V,B)⊥ of an incidence

structure (V,B) is the incidence structure (B, V ) with the roles of points and blocks interchanged.

A symmetric incidence structure always has the same parameters as its dual.

We will also assume familiarity with difference sets and almost difference sets. For the con-

venience of the reader we recall the following definitions. Let G be a finite additive group with

identity 0. Let k and λ be positive integers such that 2 ≤ k < v. A (v, k, λ) difference set in G is a

subset D ⊆ G that satisfies the following properties:

• |D| = k,

• the multiset {x− y | x, y ∈ D, x 6= y} contains every member of G \ {0} exactly λ times.

Almost difference sets are a generalization of difference sets. A (v, k, λ, t) almost difference set in

G is a subset D ⊆ G that satisfies the following properties:

14
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• |D| = k,

• the multiset {x− y | x, y ∈ D, x 6= y} contains t members of G \ {0} which appear λ times

and v − 1− t members of G \ {0} which appear λ+ 1 times.

One motivation for studying t-adesigns is in constructing linear codes. Also, due to their having

extensive applications, it is worthwhile to study the combinatorial objects arising from almost

difference sets. In Section 0.16 we give three constructions of 2-adesigns from quadratic residues,

several constructions of 2-adesigns which are almost difference families are given in Section 0.17,

and some constructions of 2-adesigns from symmetric t-designs are given in Section 0.11. In

Section 0.18 we discuss 3-adesigns and two constructions are given, and in Section 0.13 we discuss

the codes of t-adesigns (and some related structures), and include some of the codes with good

parameters in a table. Section 0.19 closes the chapter.

0.9 Constructions of 2-adesigns from Quadratic Residues

Cyclotomic classes have proven to be a powerful tool for constructing difference sets and

almost difference sets, e.g. see [22], [23], [38]. Let q be a prime power, Fq a finite field, and

e a divisor of q − 1. Denote q−1
e

by f . For a primitive element α of Fq let De
0 denote 〈αe〉, the

multiplicative group generated by αe, and let

De
i = αiDe

0, for i = 1, 2, ..., e− 1.

We call De
i the cyclotomic classes of order e. The cyclotomic numbers of order e are defined to be

(i, j)e =
∣∣De

i ∩ (De
j + 1)

∣∣ .
It is easy to see there are at most e2 different cyclotomic numbers of order e. When it is clear

from the context, we simply denote (i, j)e by (i, j). The cyclotomic numbers (h, k) of order e have

the following properties ( [17]):

(h, k) = (e− h, k − h), (0-3)

(h, k) =

(k, h), if f even,

(k + e
2
, h+ e

2
), if f odd.

(0-4)

15
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Our first three constructions make use of quadratic residues. We will need the following

lemma [17].

Lemma 0.9.1. If q ≡ 1 (mod 4) then the cyclotomic numbers of order two are given by

(0, 0) =
q − 5

4
,

(0, 1) = (1, 0) = (1, 1) =
q − 1

4
.

If q ≡ 3 (mod 4) then the cyclotomic numbers of order two are given by

(0, 1) =
q + 1

4
,

(0, 0) = (1, 0) = (1, 1) =
q − 3

4
.

We are ready to give our first construction.

Theorem 0.9.1. Let q be an odd prime power and α a primitive member of Fq. Define Ci = {z ∈

Zq−1 | αz ∈ D2
i − 1} for i = 0, 1. Then the incidence structure (Zq−1 ∪ {∞}, Dev∞(C0) ∪

Dev(C1)), where Dev∞(C0) denotes the blocks of Dev(C0) each modified by adjoining the point

“∞”, is a 2-(q, q−1
2
, q−5

2
) adesign.

Proof: We will denote {αz | z ∈ Ci} by αCi . For w ∈ Zq−1 we have

|C0 ∩ (C0 + w)| =
∣∣αC0 ∩ αC0+w

∣∣
which, since αz is nonzero and

|((D2
0 − 1) \ {0}) ∩ ((D2

0 − αw) \ {0})| = |((D2
0 \ {1})− 1) ∩ ((αwD2

0 \ {αw})− αw)|,

is |(D
2
0 \ {1}) ∩ (D2

0 \ {αw}+ (1− αw))| if w even,

|(D2
0 \ {1}) ∩ (D2

1 \ {αw}+ (1− αw))| if w odd.

Since αw(1− αw)−1 = (1− αw)−1 − 1, this becomes|(D
2
0 \ {(1− αw)−1}) ∩ (D2

0 \ {(1− αw)−1 − 1}+ 1)| if w even,

|(D2
0 \ {(1− αw)−1}) ∩ (D2

1 \ {(1− αw)−1 − 1}+ 1)| if w odd,

16
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which simplifies to |D
2
0 ∩ (D2

0 + 1) \ {(1− αw)−1}| if w even,

|D2
0 ∩ (D2

1 + 1) \ {(1− αw)−1}| if w odd.

There are four cases depending on the parity of w and whether (1 − αw)−1 ∈ D2
0 or D2

1. By

Lemma 0.9.1 we have

|C0 ∩ (C0 + w)| =



(0, 0)− 1 if w even and (1− αw)−1 ∈ D2
0,

(0, 0) if w even and (1− αw)−1 ∈ D2
1,

(0, 1)− 1 if w odd and (1− αw)−1 ∈ D2
0,

(1, 0)− 1 if w even and (1− αw)−1 ∈ D2
0.

Thus if q ≡ 1(mod 4) then

|C0 ∩ (C0 + w)| =


q−9

4
if w even and (1− αw)−1 ∈ D2

0,

q−5
4

otherwise,

and if q ≡ 3(mod 4) then

|C0 ∩ (C0 + w)| =


q−3

4
if w odd and (1− αw)−1 ∈ D2

0 or if w even and (1− αw)−1 ∈ D2
1,

q−7
4

otherwise.

Also, we have

|C1 ∩ (C1 + w)| =

|D
2
1 ∩ (D2

1 + 1) + (1− αw)| if w even,

|D2
1 ∩ (D2

1 + 1) + (1− αw)| if w odd.

Thus if q ≡ 1(mod 4) then

|C1 ∩ (C1 + w)| =


q−5

4
if w even and (1− αw)−1 ∈ D2

1,

q−1
4

otherwise.

and if q ≡ 3(mod 4) then

|C1 ∩ (C1 + w)| =


q+1

4
if w odd and (1− αw)−1 ∈ D2

1,

q−3
4

otherwise.

We need to compute the number of blocks of (Zq−1, Dev(C0)∪Dev(C1)) in which an arbitrary

pair of points appear. Consider the incidence structures (Zq−1, Dev(Ci)) for i = 0, 1. LetC⊥i , (Ci+

17
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w)⊥ denote the points of the dual structures (Dev(Ci),Zq−1) corresponding to the blocks Ci, Ci +

w. We have that (Zq−1, Dev(Ci)) is a symmetric incidence structure and by Lemma 0.2.2 the

number of blocks of (Zq−1, Dev(C0) ∪Dev(C1)) in which the points C⊥i , (Ci + w)⊥ appear is, if

q ≡ 1(mod 4), 
q−9

4
+ q−1

4
= 2q−10

4
if w even and (1− αw)−1 ∈ D2

0,

q−5
4

+ q−5
4

= 2q−10
4

if w even and (1− αw)−1 ∈ D2
1,

q−5
4

+ q−1
4

= 2q−6
4

otherwise,

and if q ≡ 3(mod 4),
q−3

4
+ q−3

4
= 2q−6

4
if w odd and (1− αw)−1 ∈ D2

0,

q−7
4

+ q+1
4

= 2q−6
4

if w even and (1− αw)−1 ∈ D2
1,

q−7
4

+ q−3
4

= 2q−10
4

otherwise.

It is easy to see that the block sizes of the incidence structures (Zq−1, Dev(C0)) and (Zq−1, Dev(C1))

are q−3
2

and q−1
2

respectively and that the number of blocks containing a given point in (Zq−1, Dev(C0))

is 2q−6
4

. Then the incidence structure (Zq−1 ∪ {∞}, Dev∞(C0)∪Dev(C1)), where Dev∞(C0) de-

notes the blocks of Dev(C0) each modified by adjoining the point∞, is a 2-adesign. �

Note that appending the symbol “∞” to certain blocks in a combinatorial design has been done

before, e.g. see Chapter 8 of [31]. Our constructions in this section also use this symbol only,

rather than extending complimentary blocks to obtain a 3-design, we first consider various other

ways of obtaining a set of blocks where any two have lengths differing by at most one, and then

extend the shorter blocks to obtain a 2-adesign.

Example 0.9.1. With q = 11 andCi defined as in Theorem 0.9.1 we get that (Z10∪{∞}, Dev∞(C0)∪

Dev(C1)) is a 2-(10, 5, 3) adesign with blocks:

{0, 1, 3, 4, 8} {1, 3, 4, 6, 7} {2, 4, 5, 7, 8} {0, 2, 3, 7, 9} {3, 5, 6, 8, 9}

{0, 1, 5, 7, 8} {1, 2, 4, 5, 9} {0, 2, 3, 5, 6} {0, 4, 6, 7, 9} {1, 2, 6, 8, 9}

{2, 5, 6, 7,∞} {0, 1, 6, 9,∞} {3, 6, 7, 8,∞} {1, 4, 5, 6,∞} {0, 1, 2, 7,∞}

{1, 2, 3, 8,∞} {2, 3, 4, 9,∞} {4, 7, 8, 9,∞} {0, 5, 8, 9,∞} {0, 3, 4, 5,∞}

18
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The next two constructions will use the following lemmas.

Lemma 0.9.2. [1] Let p be a prime. The number of pairs of consecutive quadratic residues mod p

is

N(p) =
1

4
(p− 4− (−1)

p−1
2 )

and the number of pairs of consecutive quadratic non-residues mod p is

N ′(p) =
1

4
(p− 2 + (−1)

p−1
2 ).

In the sequel we will sometimes use the following lemma without making reference to it.

Lemma 0.9.3. [3] Let p ≡ 1(mod 4) be a prime. Then the set of quadratic residues mod p forms a

(p, p−1
2
, p−5

4
, p−1

2
) almost difference set in Zp.

Lemma 0.9.4. Let p ≡ 1(mod 4) be a prime and D ⊆ Zp be the set of quadratic residues. Two

distinct points x, y ∈ D occur together in exactly p−5
4

translates of D if and only if x − y is a

quadratic residue. Dually, D + x and D + y are translates of D with x − y ∈ D if and only if

|(D + x) ∩ (D + y)| = p−5
4

.

Proof: Let x, y ∈ D be distinct. Denote p−5
4

by λ. Without loss of generality we can take

y = 1. Let

D,D + α1, ..., D + αλ−1

be precisely the λ translates of D in which x and 1 appear together. Then

x = x1 + α1 = · · · = xλ−1 + αλ−1

for some distinct quadratic residues x1, ..., xλ−1 and

1 = y1 + α1 = · · · = yλ−1 + αλ−1

for some distinct quadratic residues y1, ..., yλ−1. Now suppose that x−1 is a quadratic non-residue.

Then

x− 1 = x1 − y1 = · · · = xλ−1 − yλ−1.
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Since p ≡ 1(mod 4) we have (x− 1)−1 is also a quadratic nonresidue. Then we have

1 = (x− 1)−1x− (x− 1)−1 = (x− 1)−1xi − (x− 1)−1yi

for i = 1, ..., λ − 1. This gives precisely λ pairs of consecutive non-residues, these being the only

pairs of consecutive quadratic non-residues. But this contradicts Lemma 0.9.2, from which we have

that the number of pairs of consecutive quadratic non-residues is λ+ 1. The condition is necessary

and sufficient, and the dual argument follows from the fact that the 2-adesign (Zp, Dev(D)) is

symmetric. �

We are now ready to construct two more families of 2-adesigns.

Theorem 0.9.2. Let p ≡ 1(mod 4) be a prime greater than 5, and let D ⊆ Zp be the set of

quadratic residues. Let B = {b ∩D | b ∈ Dev(D), b 6= D}, and let B∞ be the set containing all

members of B of size p−1
4

, as well as all members of B of size p−5
4

modified by adjoining the point

∞. Then (D ∪ {∞},B∞) is a 2-(p+1
2
, p−1

4
, p−9

4
) adesign.

Proof: Let x, y ∈ D be distinct. Denote p−5
4

by λ and p−1
2

by k. If x and y appear together

in exactly λ translates of D, then x and y appear together in exactly λ blocks in B∞. Similarly, if

x and y appear together in λ + 1 translates of D then x and y appear together in λ + 1 blocks in

B∞. We want to show that x and ∞ appear together in exactly λ blocks in B∞. Without loss of

generality, we can take x = 1. There are k − 1 blocks in B∞ containing 1. Let

D,D + α1, ..., D + αw

be precisely the translates of D containing 1. By Lemma 0.9.4, if |D ∩ (D+ αi)| = λ, then αi is a

quadratic residue. If y + αi = 1 then we have a pair y,−αi of consecutive quadratic residues. By

Lemma 0.9.2, the number of pairs of consecutive quadratic residues is exactly λ.

To see that there are pairs x, y ∈ D of distinct points appearing in λ − 1 blocks as well as

those appearing in λ blocks, suppose that y1, ..., yk−1 be the k− 1 points in D \ {1}. We can again,

without loss of generality, take x = 1. Suppose that 1 and yi appear together in exactly λ translates

of D for each i, 1 ≤ i ≤ k − 1. Then yi − 1 ∈ D for all yi. By Lemma 0.9.2 this gives too many

pairs of consecutive quadratic residues, which completes the proof. �
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Example 0.9.2. With p = 13 we apply Theorem 0.9.2 and get that (D ∪ {∞},B∞) is a 2-(7, 3, 1)

adesign and B∞ contains the following blocks:

{4, 10,∞} {3, 4, 10} {1, 3, 12} {4, 9, 12}

{4, 12,∞} {10, 12,∞} {1, 3,∞} {1, 9,∞}

{1, 4, 9} {1, 10, 12} {3, 9, 10} {3, 9,∞}

Let B and B∞ be defined as in Theorem 0.9.2. The second construction is the following.

Theorem 0.9.3. Let p ≡ 1(mod 4) be a prime greater than 5, and let D ⊆ Zp be the set of

quadratic residues. Let B̄∞ be the set of complements of members of B∞ in Zp ∪ {∞}. Then

(D ∪ {∞}, B̄∞) is a 2-(p+1
2
, p+3

4
, p−5

4
) adesign.

Proof: Let x, y ∈ D ∪ {∞} be distinct. Denote p−5
4

by λ and p−1
2

by k. Suppose x and y

appear together in λ blocks in B∞. Then there are λ blocks in B̄∞ not containing x or y. Also there

are k − 1 blocks in B̄∞ not containing x and k − 1 blocks not containing y. Then the number of

blocks in B̄∞ containing x and y is

|B̄∞| − (|{b ∈ B̄∞ | x /∈ b}|+ |{b ∈ B̄∞ | y /∈ b}|) + |{b ∈ B̄∞ | x, y /∈ b}|

which is easily seen to be λ + 1. A similar calculation shows that if x and y appear together in

λ− 1 blocks in B∞ then x and y appear together in λ blocks B̄∞. �

Example 0.9.3. With p = 13 we apply Theorem 0.9.3 and get that (D ∪ {∞}, B̄∞) is a 2-(7, 4, 2)

adesign and B̄∞ contains the following blocks:

{1, 3, 9, 12} {4, 9, 10,∞} {1, 3, 9, 10} {4, 9, 10, 12}

{3, 9, 10,∞} {1, 4, 12,∞} {1, 9, 12,∞} {1, 3, 10,∞}

{1, 3, 4, 9} {3, 4, 10, 12} {3, 4, 9,∞} {1, 4, 10, 12}
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0.10 Constructions of 2-adesigns that are Almost Difference Families

Suppose G is a finite Abelian group of order v in which the identity element is denoted “0”.

Let k and λ be positive integers such that 2 ≤ k < v. A (v, k, λ) difference family in G is a

collection of subsets D0, ..., Dl of G such that

• |Di| = k for all i, 0 ≤ i ≤ l,

• the multiset union ∪li=1{x − y | x, y ∈ Di, x 6= y} contains each member of G \ {0} with

multiplicity λ,

and a (v, k, λ, t) almost difference family is defined similarly only the multiset union ∪li=1{x− y |

x, y ∈ Di, x 6= y} contains t members of G \ {0} with multiplicity λ and v − t− 1 members of G

with multiplicity λ+ 1.

It is trivial that an almost difference family is a 2-adesign. All of the 2-adesigns in this section

are also almost difference families, however, our treatment will still be in terms of 2-adesigns.

Our next two constructions make use of quadratic residues. We will need the following lemma

[17].

Lemma 0.10.1. Let q = 4f + 1 = x2 + 4y2 be a prime power with x, y ∈ Z and x ≡ 1 (mod

4) (here, y is two-valued depending on the choice of the primitive root α defining the cyclotomic

classes). The five distinct cyclotomic numbers of order four for odd f are

(0, 0) = (2, 2) = (2, 0) =
q − 7 + 2x

16
,

(0, 1) = (1, 3) = (3, 2) =
q + 1 + 2x− 8y

16
,

(1, 2) = (0, 3) = (3, 1) =
q + 1 + 2x+ 8y

16
,

(0, 2) =
q + 1− 6x

16
,

all others =
q − 3− 2x

16
,
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and those for even f are

(0, 0) =
q − 11− 6x

16
,

(0, 1) = (1, 0) = (3, 3) =
q − 3 + 2x+ 8y

16
,

(0, 2) = (2, 0) = (2, 2) =
q − 3 + 2x

16
,

(0, 3) = (3, 0) = (1, 1) =
q − 3 + 2x− 8y

16
,

all others =
q + 1− 2x

16
.

When computing difference levels of a subset C of a group G, it is sometimes convenient to

use the difference function which is defined as d(w) = |C ∩ (C + w)| where C+w denotes the set

{c+w | c ∈ C}. We are now ready to give our first construction of a 2-adesign that is a difference

family.

Theorem 0.10.1. Let q = 4f+1 = x2+4y2 be a prime power with f odd. LetC0 = D4
0∪D4

1, C1 =

D4
0 ∪ D4

2, and C2 = D4
0 ∪ D4

3. Then (Fq, Dev(C0) ∪ Dev(C1) ∪ Dev(C2)) is a 2-(q, q−1
2
, 3q−11

4
)

adesign.

Proof: Let w−1 ∈ D4
h. First we let C denoteD4

i ∪D4
i+1. Then when we expand |C ∩ (C + w)|

we get∣∣D4
i+h ∩ (D4

i+h + 1)
∣∣+∣∣D4

i+h ∩ (D4
i+h+1 + 1)

∣∣+∣∣D4
i+h+1 ∩ (D4

i+h + 1)
∣∣+∣∣D4

i+h+1 ∩ (D4
i+h+1 + 1)

∣∣
whence

|C ∩ (C + w)| = (i+ h, i+ h) + (i+ h, i+ h+ 1) + (i+ h+ 1, i+ h) + (i+ h+ 1, i+ h+ 1)

=



q−2y−3
4

for i = 0 and h = 0 or 2,

q+2y−3
4

for i = 0 and h = 1 or 3,

q−2y−3
4

for i = 3 and h = 0 or 2,

q+2y−3
4

for i = 3 and h = 1 or 3.

(by Lemmas 0.9.1 and 0.10.1)

We also have

|Cj ∩ (Cj + w)| =


q−5

4
for j = 0 or 2,

q−1
4

for j = 1 or 3.
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Now consider the incidence structures (Fq, DevCi) for j = 0, 1, 2. Let C⊥j , (Cj +w)⊥ denote

the points of the dual structures (Dev(Cj),Fq) corresponding to the blocks Cj, Cj + w. We have

that (Fq, Dev(Cj)) is a symmetric incidence structure and by Lemma 0.2.2 the number of blocks

of (Fq, Dev(C0) ∪Dev(C1) ∪Dev(C2)) which the points C⊥j , (Cj + w)⊥ appear in is
3q−11

4
if w−1 ∈ D4

0 ∪D4
2,

3q−7
4

if w−1 ∈ D4
1 ∪D4

3.

�

Another construction is the following.

Theorem 0.10.2. Let q = 4f + 1 = x2 + 4y2 be a prime power with f even and x = 1 or −3.

Then (Fq, Dev(D4
0) ∪Dev(D4

2)) is a 2-(q, q−1
4
, q−7−2x

8
) adesign.

Proof: We have, by Lemma 0.10.1,

∣∣D4
i ∩ (D4

i + w)
∣∣ =

∣∣D4
h ∩ (D4

h + 1)
∣∣

= (i+ h, i+ h)

=



q−11−6x
16

if h = 0, i = 0 or h = 2, i = 2,

q−3+2x−8y
16

if h = 1, i = 0 or h = 2, i = 2,

q−3+2x
16

if h = 2, i = 0 or h = 3, i = 2,

q−3+2x+8y
16

for h = 3, i = 0 or h = 0, i = 2.

Now consider the incidence structures (Fq, Dev(D4
i )) for i = 0, 2. Let C⊥i , (Ci +w)⊥ denote

the points of the dual structures (Dev(D4
i ),Fq) corresponding to the blocks Ci, Ci + w. We have

that (Fq, Dev(Ci)) is a self-dual incidence structure and by Lemma 0.2.2 the number of blocks of

(Fq, Dev(D4
0) ∪Dev(D4

2)) which the points C⊥i , (Ci + w)⊥ appear in is
2q−14−4x

16
if w−1 ∈ D4

0 ∪D4
2,

2q−6+4x
16

if w−1 ∈ D4
1 ∪D4

3.

Thus, we have (Fq, Dev(D4
0) ∪Dev(D4

2)) is a 2-adesign whenever x = 1, or −3. �
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We close this section with yet a few more constructions. Now let q be an odd prime power,

and C ⊆ Fq. According to [38], if

1. C = D4
i ∪D4

i+1, q ≡ 5(mod 8) and q = s2 + 4 with s ≡ 1(mod 4), or

2. C = D8
0 ∪D8

1 ∪D8
2 ∪D8

5, q = l2 where l is a prime power of form l = t2 + 2 ≡ 3(mod 8), or

3. C = ∪i∈ID
√
q+1

i where I ⊆ {0, 1, ..,√q} with |I| =
√
q+1

2
and q = l2 for some prime power

l,

then C is a (q, q−1
2
, q−5

4
, q−1

2
) almost difference set in Fq.

It is easy to show, also, that if q is an odd prime power, (Fq, Dev(D2
0) ∪ Dev(D2

1)) is a

2-(q, q−1
2
, 2q−6

4
) design. We then have the following.

Theorem 0.10.3. Let q be an odd prime power, and C ⊆ Fq. If

1. C = D4
i ∪D4

i+1, q ≡ 5(mod 8) and q = s2 + 4 with s ≡ 1(mod 4), or

2. C = D8
0 ∪D8

1 ∪D8
2 ∪D8

5, q = l2 where l is a prime power of form l = t2 + 2 ≡ 3(mod 8), or

3. C = ∪i∈ID
√
q+1

i where I ⊆ {0, 1, ..,√q} with |I| =
√
q+1

2
, I contains both even and odd

numbers, and q = l2 for some prime power l,

then (Fq, Dev(D2
0) ∪Dev(D2

1) ∪Dev(C)) is a 2-(q, q−1
2
, 3q−11

4
) adesign.

0.11 Constructions of 2-adesigns from Symmetric Designs

Let (V,B) be an incidence structure with |B| = b. The numbers of blocks in which given

single points appear (called the replication numbers) become the block sizes of the dual (V,B)⊥,

and the intersection numbers among pairs of blocks become the numbers of blocks of (V,B)⊥ in

which any two points appear. Then the following is clear.

Lemma 0.11.1. Let (V,B) be an incidence structure with |B| = v, and in which the replication

numbers are a constant k and the intersection numbers among pairs of blocks are integers λ and

λ+ 1. Then (V,B)⊥ is a 2-(b, k, λ) adesign.
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Remark 0.11.1. The dual of a quasi-symmetric design whose intersection numbers x, y are such

that y − x = 1 is always a 2-adesign.

In [3] constructions of almost difference sets from difference sets were introduced. In this

section we further generalize this idea. We will use the following lemma which is actually a trivial

construction in itself.

Lemma 0.11.2. Let (V,B) be a symmetric 2-(v, k, λ) design. Let b1, ...,bk be any k blocks in B.

Let “∞” denote a point. Let B′ denote the blocks of B modified by adjoining the point “∞” to

each of b1, ...,bk. Then (V,B′)⊥ is a 2-(v, k, λ) adesign.

Proof: The replication numbers in the incidence structure (V,B′) are all k, and the intersection

numbers among pairs of blocks in B′ are λ and λ+ 1. The result follows from Lemma 0.11.1. �

Note that the number of times which Lemma 0.11.2 can be applied to any given symmetric

2-(v, k, λ) design is b v
k
c.

The following theorem gives another construction.

Theorem 0.11.1. Let (V,B) be a symmetric 2-(v, k, λ) design. Let b = {b1, ..., bk} be a block.

Suppose that b1, ...,bk are k blocks not equal to b such that

1. bi 6∈ bi for all i, 1 ≤ i ≤ k, and

2. bj ∈ bl implies bl 6∈ bj for all j 6= l, 1 ≤ j, l ≤ k.

Let B′ denote the blocks of B modified by adjoining the point bi to the block bi for all i, 1 ≤ i ≤ k,

and then removing the block b. Then (V,B′)⊥ is a 2-(v, k, λ) adesign.

Proof: It is easy to see that the replication numbers of (V,B′) are all k. The second condition

in the statement ensures that the intersection numbers among pairs of blocks of B′ are either λ or

λ+ 1. The result then follows from Lemma 0.11.1. �

Next, we show how to construct almost difference sets from planar difference sets. The fol-

lowing constructions are not optimal but, for certain dimensions, give the best known value for d1.

A (v, k, λ) difference set is called planar if λ = 1. It is easy to show that, given a planar difference
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setD in an (additive) Abelian groupG of order v, if we choose any a0 ∈ G\D such that 2a0 cannot

be written as the sum of two distinct members of D, then D∪{a0} will be an almost difference set

with λ = 1. This is simply due to the fact that, because of the way we chose a0, we cannot have

a0 − a = b − a0 for any a, b ∈ D, thereby forcing each member of G to appear as a difference of

two distinct members of D ∪ {a0} only one or two times.

Again, let D be a (v, k, 1) difference set in an Abelian group G of order v. Also let κ :

G → Z2 × G by x 7→ (0, x). Suppose a0, ..., as−1 ∈ G are such that the differences (1, τ) in

κ(D) ∪ {(1, a0), ..., (1, as−1)} cover {1} × G each having multiplicity at most 2, that exactly one

of the ais is a member of D, and twice any ai is not the sum of two other distinct ais. If there

is at least one difference in κ(D) ∪ {(1, a0), ..., (1, as−1)} having multiplicity 1, then since the

difference (1, 0) occurs exactly twice (because exactly one of the ais is in D), we have both 1 and

2 occurring as multiplicities. No difference can occur with multiplicity greater than 2 since G is

planar and twice any ai is not the sum of two other distinct ais. We also have the differences in

κ(D) ∪ {(1, a0), ..., (1, as−1)} covering Z2 × G: the differences (0, τ) cover {0} × G due to G

being a planar difference set and we have assumed that the differences (1, τ) cover {1} ×G. This

discussion is summarized in the following.

Theorem 0.11.2. Let D be a (v, k, 1) difference set in an (additive) Abelian group G. Sup-

pose a0, ..., as−1 ∈ G are such that the differences (1, τ) in κ(D) ∪ {(1, a0), ..., (1, as−1)} cov-

er {1} × G each having multiplicity at most 2, that exactly one of the ais is a member of D,

and twice any ai is not the sum of two other distinct ais. If there is at least one difference

in κ(D) ∪ {(1, a0), ..., (1, as−1)} having multiplicity 1 then κ(D) ∪ {(1, a0), ..., (1, as−1)} is a

(2v, k + s, 1, t) almost difference set in Z2 × G. The resulting symmetric 2-adesign (Z2 × G,

Dev(κ(D) ∪ {(1, a0), ..., (1, as−1)})) has parameters (2v, k + s, 1).

Example 0.11.1. Consider the Singer difference set D = {1, 2, 4} in Z7. With a0 = 0 we have 2a0

is not the sum of two distinct members of D, and κ(D)∪{(1, 0)} is a (14, 4, 0, 1) almost difference

set in Z14. With a1 = 1 we have κ(D)∪{(1, 0), (1, 1)} is a (14, 5, 1, 6) almost difference set in Z14

Example 0.11.2. Consider the Singer difference set D = {0, 1, 5, 11} in Z13. With a0 = 10, we

have 2a0 is not the sum of two distinct members of D, and it is easily checked that κ(D)∪{(1, 10)}

is a (26, 5, 0, 5) almost difference set in Z26. With a1 = 11 we have that κ(D) ∪ {(1, a0), (1, a1)}
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is a (26, 6, 1, 11) almost difference set.

Example 0.11.3. Now consider the Singer difference set D = {0, 3, 13, 15, 20} in Z21. We have

{9, 13, 16} are such that the differences (1, τ) cover {1} × Z21 with multiplicities no more than 2

and that 13 is the only member that is also in D. It is also easy to see that the difference (1, 9)

can only occur as the difference (1, 9)− (0, 0). Thus we have κ(D) ∪ {(1, 9), (1, 13), (1, 16)} is a

(42, 8, 1, 16) almost difference set.

0.12 Constructions of 3-adesigns

In this section we will give two constructions each of which produce infinitely many 3-

adesigns.

Our first constructions makes use of quadratic residues.

Theorem 0.12.1. Let q ≡ 3(mod 4) be an odd prime power. Then (Fq, Dev(D2
0) ∪Dev(D2

1)) is a

3-(q, q−1
2
, q−7

4
) adesign.

Proof: Denote q−1
2

by k and q−3
4

by λ′. Let x, y, z ∈ Fq be arbitrary. To count the number

of blocks in which x, y, z appear together, we first count the number of blocks of Dev(D2
0) ∪

Dev(D2
1 ∪ {0}) in which x, y, z appear together. Suppose that the three points x, y, z appear in µ

blocks in Dev(D2
0). Using the fact that (Fq, Dev(D2

0)) is a 2-(q, k, λ′) design, a simple counting

argument gives that there are q − 3k + 3λ′ − µ blocks in Dev(D2
0) := Dev(D2

1 ∪ {0}) containing

x, y, z. Thus, there are q − 3k + 3λ′ = λ′ blocks in Dev(D2
0) ∪Dev(D2

0) containing x, y, z. Since

w ∈ D2
1 ∪ {0} + w for all w ∈ Fq, we want to know how many of the q − 3k + 3λ′ − µ blocks

in Dev(D2
0) are also in {D2

0 + x,D2
0 + y,D2

0 + z}. Without loss of generality suppose that both

D2
0 + x and D2

0 + y contain the three points x, y, z. Then we must have y − x, z − x 6∈ D2
0 and

x − y, z − y 6∈ D2
0. But this would imply that x − y, y − x ∈ D2

1 where both x − y and y − x

are nonzero. But this is impossible as the additive inverse of any member of D2
1 cannot also be a

member whenever q ≡ 3(mod 4). Then no more than one of the blocks D2
0 + x,D2

0 + y,D2
0 + z

can contain all three of x, y, z. We now need to show that there are two different 3-levels, i.e.

that (Fq, Dev(D2
0) ∪ Dev(D2

1)) is not a 3-design, but a 3-adesign. To show this we assume that

(Fq, Dev(D2
0) ∪Dev(D2

1)) is a 3-(q, k, λ)-design for some λ. Then the number of blocks must be
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given by λ (q
3)

(k
3)

. The only choices for λ are λ′ or λ′ − 1. If λ = λ′ then we get that q− 5 = q− 4. If

λ = λ′ − 1 then we get that (q − 3)(q − 5) = (q − 7)(q − 2). Either way we get a contradiction,

which completes the proof. �

Example 0.12.1. With q = 11 we apply Theorem 0.12.1 and get that (Z11, Dev(D2
0) ∪Dev(D2

1))

is a 3-(11, 5, 1) adesign with blocks:

{1, 3, 4, 5, 9} {2, 4, 5, 6, 10} {0, 3, 5, 6, 7} {1, 4, 6, 7, 8} {2, 5, 7, 8, 9} {0, 4, 5, 6, 8}

{3, 6, 8, 9, 10} {0, 4, 7, 9, 10} {0, 1, 5, 8, 10} {0, 1, 2, 6, 9} {1, 2, 3, 7, 10} {1, 5, 6, 7, 9}

{0, 2, 3, 4, 8} {2, 6, 7, 8, 10} {0, 3, 7, 8, 9} {1, 4, 8, 9, 10} {0, 2, 5, 9, 10}

{0, 1, 3, 6, 10} {0, 1, 2, 4, 7} {1, 2, 3, 5, 8} {2, 3, 4, 6, 9} {3, 4, 5, 7, 10}

Our second construction is related to graphs, though it is simple enough to avoid graph-

theoretical preliminaries.

Theorem 0.12.2. Let n (≥ 7) be an odd integer not divisible by 3. Consider, for fixed a ∈ Zn, all

pairs {a − i (mod n), a + i (mod n)} for i = 1, · · · , n−1
2

. The union of any two distinct pairs

gives a block consisting of four points. Denote, for fixed a ∈ Zn, the set of all blocks obtained in

this way by Ba. Then (Zn,∪a∈ZnBa) is a 3-(n, 4, 2) adesign.

Proof: Arrange all the points in a circle as is shown in the graph below. For any three points

x, y, z ∈ Zn, denote |x− y|, |x− z|, |y − z| by dxy, dxz, dyz respectively.

Since n is not divisible by 3, dxy = dxz = dyz cannot happen. Then suppose two of them are

equal. Without loss of generality, suppose dxz = dyz. Then when x and y are in a pair, z must be

the fixed point so that there is no block containing all three of x, y and z. When x and z are in a

pair or y and z are in pair, we can find exactly one block containing the three points in each case.

If dxy, dxz and dyz are distinct, then we can find one block containing these three points when any

two points are in pair, in which case we have three blocks containing these three points together.
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x y

z

0 1n− 1
2

···dxy

dxz dyz

�

Example 0.12.2. With n = 7 we apply Theorem 0.12.2 and get that (Z7,∪a∈Z7Ba) is a 3-(7, 4, 2)

adesign with blocks:

{1, 7, 2, 6} {1, 7, 3, 5} {2, 6, 3, 5} {7, 6, 1, 5} {7, 6, 2, 4} {1, 5, 2, 4} {1, 4, 2, 3}

{1, 3, 7, 4} {1, 3, 6, 5} {7, 4, 6, 5} {7, 2, 6, 3} {7, 2, 5, 4} {6, 3, 5, 4} {1, 2, 7, 3}

{1, 6, 2, 5} {1, 6, 3, 4} {2, 5, 3, 4} {7, 5, 1, 4} {7, 5, 2, 3} {7, 3, 6, 4} {1, 2, 6, 4}

Let (V,B) be an incidence structure. Let p ∈ V , and define Bp = {B \ {p} | B ∈ B and p ∈

B}. We call the incidence structure (V \ {p},Bp) the contraction of (V,B) at p. It is clear that

contracting at points of a 3-adesign will give a 2-adesign as long as not all 3-sets of points occur in

the same number of blocks of the contraction.

Example 0.12.3. The contraction at the point p = 1 of the 3-(11, 5, 1) adesign in Example 0.12.1

is a symmetric 2-(10, 4, 1) adesign with the ten blocks:

{3, 4, 5, 9} {4, 6, 7, 8} {0, 5, 8, 10} {0, 2, 6, 9} {2, 3, 7, 10}

{4, 8, 9, 10} {0, 3, 6, 10} {0, 2, 4, 7} {2, 3, 5, 8} {5, 6, 7, 9}
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Remark 0.12.1. Interestingly, a contraction at any point of the incidence structure (Fq, Dev(D2
0)∪

Dev(D2
1)) from Theorem 0.12.1 gives a symmetric 2-(q−1, q−3

2
, q−7

4
) adesign and, since it contains

punctured translates of both D2
0 and D2

1, cannot be the development of any almost difference set.

0.13 Related Codes

0.13.1 Cyclic Codes

We assume some familiarity with cyclic codes. For more details on the subject the reader is

referred to [21]. An [n, k] code C over F2 is called cyclic if (c0, c1, ..., cn−1) ∈ C implies that the

circular shift (cn−1, c0, ..., cn−2) is also in C. By identifying any vector (c0, c1, ..., cn−1) ∈ Fn2 with

the polynomial

c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 ∈ F2 [x] /(xn − 1),

any linear code C of length n over F2 corresponds to a subset of F2 [x] /(xn−1). The code is cyclic

if and only if the corresponding subset is an ideal in the ring F2 [x] /(xn− 1). Note that every ideal

of F2 [x] /(xn− 1) is principal. Let g(x) ∈ F2 [x] /(xn− 1) be monic and of minimum degree, and

let C = 〈g(x)〉. Then g(x) is called the generator polynomial of C, and h(x) = (xn − 1)/g(x) is

referred to as the parity-check polynomial. The dimension of C is given by the degree of h(x).

The following theorem is easy to prove.

Lemma 0.13.1. LetD be subset of Zn with two difference levels. DefineD(x) =
∑

i∈D x
i ∈ F2 [x],

g(x) = gcd(xn − 1, D(x)), and h(x) = (xn − 1)/g(x). Then the code C = 〈g(x)〉 is an [n, k]

cyclic code where k = deg(h(x)).

0.13.2 Known Results on Cyclic Codes from 2-adesigns

It is known that when p ≡ 1(mod 4) the code C = 〈D2
0(x)〉 is a quadratic residue code if 2

is a square in F∗p, and a trivial cyclic code otherwise [21]. When p = 9 + 4y2 ≡ 1(mod 4) resp.

p = 49 + 4y2 ≡ 1(mod 4) is a prime, D4
0 resp. D4

0 ∪ {0} is an almost difference set [38]. If

D is either of these almost difference sets, then some parameters for the code C = 〈D(x)〉 are

known and can be found in [20]. When p1 and p2 are primes such that p2 − p1 = 4, the set E =

E
(2)
1 ∪{p1, 2p1, ..., (p2− 1)p1}, where E(2)

1 = {0 ≤ i ≤ p1p2 | i
p1p2

= −1}, is an almost difference

set [38], and some of the parameters of C = 〈E(x)〉 are known and can be found in [19]. Lastly,
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when q is a prime power and α a generator of F∗q2 , the set Dq = {0 ≤ i ≤ n− 1 | Tr(αi) = 1} is

a planar almost difference set (i.e. with difference levels 0 and 1), and the code C = 〈Dq(x)〉 has

parameters [q2 − 1, q + 1, q − 1] [21]. There are many other constructions of almost difference

sets, and the parameters of their linear codes are open in general.

0.13.3 Cyclic Codes from Sets with Two Difference Levels

Sets with two difference levels that are not almost difference sets can also generate codes with

good parameters. For example, when q ≡ 1(mod 8) is a prime power with unique representation

q = x2 + 4y2 = a2 + 2b2 where x, a ≡ 1(mod 4), and α is a generator of F∗q , we can define

D = D8
0 ∪D8

1 ∪D8
2 ∪D8

5 and ∆j = |(D + αj ∩D|. It was shown in [23] that

∆0 = ∆2 = ∆4 = ∆6 =
16q − 48 + 8x− 8a− 16y

64
(0-5)

∆1 = ∆5 =
16q − 80− 16x+ 16a− 32y

64
(0-6)

∆3 = ∆7 =
16q − 16

64
. (0-7)

Thus, if 3(a−x)−2y = 4, we have that (Fq, Dev(D)) is an incidence structure with two difference

levels given by µ1 = 16q−48+8x−8a−16y
64

and µ2 = 16q−16
64

.

Example 0.13.1. With q = 73 we have the unique representation is given by x = −3, y = 4 and

a = 1, b = 6. Thus the two difference levels are µ1 = 16 and µ2 = 18. Since the difference

levels are ≡ 0(mod 2), the inner product over the field F2 of any two rows of the incidence matrix

will be 0, making the code C = 〈D(x)〉 self-orthogonal. We checked using MAGMA, and C is

a [73, 18, 24] code. According the code tables in [29], the best binary code with length 73 and

dimension 18 has minimum weight 24.

We also have computed the following example using cyclotomic classes of order ten. The

cyclotomic numbers of order ten are known and can be found in [50].

Example 0.13.2. Let q = 151, and define D = D4∪D5∪D8∪D9. Then D has the two difference

levels µ1 = 22 and µ2 = 24 and the code C = 〈D(x)〉 is self-orthogonal. We checked using

MAGMA, and C is a [151, 30, 48] code. According the code tables in [29], the best binary code

with length 151 and dimension 30 has minimum weight 48.
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Lemma 0.13.2. Let A be a v × v incidence matrix of the symmetric incidence structure (G,B)

obtained from the development of some k-subset D in the Abelian group G (where |G| = v) with

difference levels µ1 < · · · < µs. Suppose that k ≡ µ1 ≡ · · · ≡ µs(mod 2).

1. If k is even the binary code of length v with generator matrix A is self-orthogonal.

2. If k is odd the matrix 
1

... A

1


generates a binary self-orthogonal code of length v + 1.

Proof: By Lemma 0.2.2 we can see that, in both cases, the weights of the rows of the generator

matrix are all even and the inner product of any two rows is even as well. �

We will refer to an incidence structure (V,B) whose incidence matrix generates a self-orthogonal

code simply as self-orthogonal.

We will use the following lemma.

Lemma 0.13.3. Let (G,B) be a symmetric incidence structure coming from the development of a

k-subset D of the Abelian group G (where |G| = v) with difference levels µ1 and µ2. Let t denote

the number of members ofG\{0} which appear µ1 times in the multiset {x−y | x, y ∈ D, x 6= y}.

The the number of pairs of points in G appearing in exactly µ1 blocks in B is vt
2

and the number of

pairs of points of V appearing in µ2 blocks is v(v−1−t)
2

.

Proof: For each x ∈ V , there are t points in V \{x} each appearing together with x in exactly

µ1 blocks. Thus, there are vt
2

pairs of points of V appearing in µ1 blocks. Similarly, there are
v(v−1−t)

2
pairs of points of V appearing in µ2 blocks. It is easily seen that vt

2
+ v(v−1−t)

2
=
(
v
2

)
. �

We were able to come up with the following bound on the minimum distance of a code gener-

ated by a self-orthogonal incidence structure with two difference levels. However, as is clear from

Examples 0.13.1 and 0.13.2, there is much room for improvement.
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Theorem 0.13.1. Let A be the incidence matrix of a self-orthogonal incidence structure (G,B)

coming from the development of a k-subset D of the Abelian group G (where |G| = v) with

difference levels µ1 and µ2. Let t denote the number of members of G \ {0} which appear µ1 times

in the multiset {x − y | x, y ∈ D, x 6= y}. The dual of the binary code with generator matrix A

has minimum distance

d ≥
(µ2 + k) +

√
(µ2 + k)2 + 4µ2(µ2 − µ1)vt

2µ2

.

Proof: Let S be a minimal set of linearly dependent columns of A. Then every row of A

must intersect an even number of these columns in 1s. Let ni denote the number of rows of A

intersecting exactly i columns of S in 1s. Let d = |S|. Since every column of A contains k 1s

(because the incidence structure (G,B) is symmetric) and the scalar product (over the reals) of any

two columns is either µ1 or µ2, using Lemma 0.13.3 we have∑
2in2i = kd

and ∑
2i(2i− 1)n2i = µ2d(d− 1)− (µ2 − µ1)vt.

Subtracting the first equation from the second we have∑
2i(2i− 2)n2i = d((d− 1)µ2 − k)− (µ2 − µ1)vt ≥ 0.

On one hand we get that d((d − 1)µ2 − k) ≥ (µ2 − µ1)vt ≥ 0 and on the other hand we get that

d2µ2 − d(µ2 + k)− (µ2 − µ1)vt ≥ 0. The result follows from solving the quadratic. �

0.13.4 Noncyclic Codes from Adesigns

In general, the parameters of codes generated from adesigns are open. Using MAGMA we

have computed the parameters of the codes generated by the transpose of the incidence matrix of

many of our constructions. We have included the parameters and construction information in the

following two tables.
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Table 0-1 Parameters of codes from new 2-adesigns computed by MAGMA

2-adesign ref (v, k, λ) no. of blocks code parameters best d optimal

Theorem 0.9.1 (11, 5, 3) 20 [20, 11, 4] 5 no

Theorem 0.9.1 (19, 9, 7) 36 [36, 19, 7] 8 no

Theorem 0.9.2 (9, 4, 2) 16 [16, 8, 5] 5 yes

Theorem 0.9.2 (21, 10, 8) 40 [40, 20, 9] 9 no

Theorem 0.9.3 (9, 5, 4) 16 [16, 9, 4] 4 yes

Theorem 0.9.3 (21, 11, 10) 40 [40, 21, 8] 8 no

Theorem 0.10.1 (13, 6, 7) 39 [39, 12, 12] 14 no

Theorem 0.10.1 (29, 14, 19) 87 [87, 28, 22] 24 no

Theorem 0.10.1 (53, 26, 37) 159 [159, 52, 36] 35 no

Theorem 0.10.2 (17, 4, 1) 34 [34, 16, 6] 8 no

Theorem 0.10.2 (73, 18, 8) 146 [146, 72, 20] 22 no

Note: The column “best d” contains the best known minimum distances according to [29].

Remark 0.13.1. The [159, 52, 36] code corresponding to the 2-(53, 26, 37) adesign in Table 0-1

actually improves the lower bound for the minimum weight given in [29] for the best binary code

with length 53 and dimension 26.
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Table 0-2 Parameters of codes from new 3-adesigns computed by MAGMA

3-adesign ref (v, k, λ) no. of blocks code parameters best d optimal

Theorem 0.12.1 (7, 3, 0) 14 [14, 7, 4] 4 yes

Theorem 0.12.1 (19, 9, 3) 38 [38, 19, 8] 8 no

Theorem 0.12.2 (7, 4, 2) 21 [21, 6, 8] 8 yes

Theorem 0.12.2 (11, 4, 2) 110 [110, 10, 40] 50 no

Note: The column “best d” contains the best minimum distances according to [ 29].

Remark 0.13.2. The code corresponding to the 3-(7, 4, 2) adesign in Table 0-2 is in fact an optimal,

projective two-weight [21, 6, 8] code, and so is an optimal code that corresponds to a strongly

regular graph [10].

Remark 0.13.3. The codes corresponding to the 3-(7, 3, 0) and 3-(19, 9, 3) adesigns in Table 0-2

are both extremal self-dual codes [46].

0.14 Closing Remarks

We have investigated some generalizations of combinatorial designs arising from almost dif-

ference sets, especially the t-adesigns. We have discussed some of their basic properties and have

given several constructions for 2-adesigns, and two contructions for 3-adesigns. Many of the codes

arising from these structures have good parameters, as was discussed in Section 7, and we have

included some of these in the tables of the previous section. Questions concerning the parameters

of the codes arising from adesigns are open in general and, as good codes are arising from many

of these structures, further investigation would be worthwhile.
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Chapter 4. Partial Geometric Difference Families

0.15 Introduction

In this chapter we discuss partial geometric difference sets and partial geometric difference

families, which were introduced by Olmez in [42] and Nowak et al. [39]. Here it was also

shown that partial geometric difference sets and partial geometric difference families give partial

geometric designs. In this chapter we construct several new classes of partial geometric difference

sets and partial geometric difference families, thereby giving new directed strongly regular graphs,

and we also discuss some of their links to partially balanced designs and 2-adesigns, and make an

investigation into when a 2-adesign is a partial geometric design.

This chapter is organized as follows. In Section 0.16 we construct four classes of partial

geometric difference sets, in Section 0.17 we construct six classes of partial geometric differ-

ence families, in Section 0.18 we discuss some of the links between partially balanced designs,

2-adesigns, and partial geometric designs, and investigate when a 2-adesign is a partial geometric

design. Section 0.19 concludes the chapter.

0.16 New Partial Geometric Difference Sets

We will need the following lemmas.

Lemma 0.16.1. [4] Let q be a prime power and let Ci, for i = 0, 1, ..., q denote the cyclotomic

classes of order q + 1 in Fq2 . Then the cyclotomic numbers are given by

(0, 0) = q − 2,

(i, i) = (i, 0) = (0, i) = 0,

(i, j) = 1, (0 6= i 6= j).
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Lemma 0.16.2. [39] Let p be a prime and let Ci, for i = 0, 1, ..., p denote the cyclotomic classes

of order p + 1 in Fp2 . Let Si = Ci ∪ {0} for i = 0, 1, ..., p. If x /∈ Sj then |(x− Sj) ∩ Ci| = 1 for

each i ∈ {0, 1, ..., p} \ {j}.

The following is our first construction.

Theorem 0.16.1. Let p > 2 be a prime and let Ci, for i = 0, 1, ..., p, denote the cyclotomic classes

of order p + 1 in Fp2 . Let Si = Ci ∪ {0} for i = 0, 1, ..., p. Let i′, j′ ∈ {0, 1, ..., p} be fixed with

i′ 6= j′. Let m ≡ 0 (mod 2) be a positive integer, and define

Ωl = l + {0, 2, ...,m− 2} ⊂ Zm for l = 0, 1.

Then Si′j′ = Ω0 × Si′ ∪ Ω1 × Sj′ is a partial geometric difference set in (Zm × Fp2 ,+) with

parameters (mp2,mp; 3
4
m2p, (m

2
)2p(p+ 3)).

Proof: First note that S0
∼= Fp, and Si′ , Sj′ are both subgroups of (Fp2 ,+). For each z ∈ Fp2

and each i ∈ {0, 1, .., p} we have

δSi
(z) =

|Si|, if z ∈ Si

0, otherwise
=

p, if z ∈ Si,

0, otherwise.
(0-8)

We first calculate β. Suppose that (h, z) ∈ Si′j′ . Then we have

(h, z)− Si′j′ =

Ω0 × Si′ ∪ Ω1 × (z − Sj′), if h ∈ Ω0, z ∈ Si′ ,

Ω1 × (z − Si′) ∪ Ω0 × Sj′ , if h ∈ Ω1, z ∈ Sj′ .
(0-9)

Denote the number of occurrences of u in ∆(Si′j′) by nu. Then
∑

(h′,z′)∈Si′j′
δSi′j′

((h, z)− (h′, z′))

can be written
∑

v∈Ω0×{0} nv +
∑

v∈Ω0×(Si′\{0})
nv +

∑
v∈Ω1×((z−Sj′ )\{z})

nv +
∑

v∈Ω1×{z} nv, if h ∈ Ω0, z ∈ Si′ ,∑
v∈Ω0×{0} nv +

∑
v∈Ω0×(Sj′\{0})

nv +
∑

v∈Ω1×((z−Si′ )\{z})
nv +

∑
v∈Ω1×{z} nv, if h ∈ Ω1, z ∈ Sj′ .

which, by (0-9), in both cases gives β = 2(m
2

)2p+(m
2

)2(p−1)p+(m
2

)2p+(m
2

)2p = (m
2

)2p(p+3).
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We now calculate α. Suppose that (h, z) /∈ Si′j′ . We have

(h, z)− Si′j′ =



Ω0 × (z − Si′) ∪ Ω1 × Sj′ , if h ∈ Ω0, z ∈ Sj′ ,

Ω1 × Si′ ∪ Ω0 × (z − Sj′), if h ∈ Ω1, z ∈ Si′ ,

Ω0 × (z − Si′) ∪ Ω1 × (z − Sj′), if h ∈ Ω0, z /∈ Si′ ∪ Sj′ ,

Ω1 × (z − Si′) ∪ Ω0 × (z − Sj′) if h ∈ Ω1, z /∈ Si′ ∪ Sj′ .

(0-10)

Using Lemma 0.16.2, it is easy to see that (h,w), where h ∈ Ω0, w ∈ (z − Si′) ∩ Sj′ and z /∈ Si′ ,

appears m
2
p times in ∆(Si′j′), and each member of Ω1 × Sj′ appears m times. Similarly, (0, w),

where w ∈ Si′ ∩ (z − Sj′) and z /∈ Sj′ , appears (m
2

)2p times in ∆(Si′j′), and each member of

Ω1 × Si′ appears m times.

We need to consider the two cases h ∈ Ω0, z /∈ Si′ ∪ Sj′ and h ∈ Ω1, z /∈ Si′ ∪ Sj′ . Notice

∆(Si′j′) = Si′j′S
−1
i′j′ = (Ω0 × Si′ ∪ Ω1 × Sj′)(Ω0 × Si′ ∪ Ω1 × Sj′)−1

=
m

2
(Ω0, Si′S

−1
i′ ) +

m

2
(Ω1, Si′S

−1
j′ ) +

m

2
(Ω1, Sj′S

−1
i′ ) +

m

2
(Ω0, Sj′S

−1
j′ )

=
m

2
(Ω0, p(Si′ ∪ Sj′)) +

m

2
(Ω1, Si′S

−1
j′ + Sj′S

−1
i′ ). (0-11)

Since Ci ∩ Cj = ∅ for i 6= j and f = p2−1
p+1

is even, we have by Lemma 0.7.1 that

CiC
−1
j = CiCj =

p∑
l=0

(j − i, l − i)Cl =
∑
l 6=i,j

(j − i, l − i)Cl.

Thus, by using (0-10) and Lemma 0.16.1, we can see that in the case where h ∈ Ω0 and z /∈ Si′∪Sj′ ,

each member of Ω1 × (z − Sj′) appears m times in ∆(Si′j′), and a member (h,w), where h ∈ Ω0

and w ∈ (z − Si′) ∩ Sj′ , appears m
2
p times. Similarly, in the case where h ∈ Ω1 and w /∈ Si′ ∪ Sj′ ,

each member of Ω1 × (z − Si′) appears m times in ∆(Si′j′), and a member (h,w), where h ∈ Ω0

and w ∈ Si′∩(z−Sj′), appears m
2
p times. Thus we have α =

∑
(h′,z′)∈Si′j′

δSi′j′
((h, z)−(h′, z′)) =

(m
2

)2p+m(m
2

)p = 3
4
m2p. �

Example 0.16.1. Let p = 5 and m = 4. Let γ be a generator of F∗52 . Then by Theorem 0.16.1

S1,0 = {(0, 0), (0, γ), (0, γ7), (0, γ13), (0, γ19), (2, 0), (2, γ), (2, γ7), (2, γ13),

(2, γ19), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)}

is a (100, 20; 60, 160) partial geometric difference set in Z4 × F52 . By Theorem 0.3.1 this yields

a partial geometric design with parameters (100, 20, 20; 60, 102) whence, via Theorem 0.4.2, a

directed strongly regular graph with parameters (2000, 399, 140, 139, 60).
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We give another construction of partial geometric difference sets in products of Abelian group-

s.

Theorem 0.16.2. Let p be a prime and let Ci, for i = 0, 1, ..., p, denote the cyclotomic classes of

order p+1 in Fp2 . Let Si = Ci∪{0} for i = 0, 1, ..., p. Let i′, j′ ∈ {0, 1, ..., p} be fixed with i′ 6= j′.

Let {0, 3}, {1, 4} ⊂ Z6. Then Si′j′ = {0, 3} × Si′ ∪ {1, 4} × Sj′ is a partial geometric difference

set in (Z6 × Fp2 ,+) with parameters (6p2, 4p; 8p, 20p).

Proof: We have already established in (0-8) that

δSi
(z) =

p, if z ∈ Si,

0, otherwise.

To calculate β we suppose that (h, z) ∈ Si′j′ . Then we have

(h, z)− Si′j′ =

{0, 3} × Si
′ ∪ {2, 5} × (z − Sj′), if h ∈ {0, 3}, z ∈ Si′ ,

{1, 4} × (z − Si′) ∪ {0, 3} × Sj′ , if h ∈ {1, 4}, z ∈ Sj′ .
(0-12)

If we denote the number of occurrences of u in ∆(Si′j′) by nu then, using (0-12), we have

β =
∑

(h′,z′)∈Si′j′

δSi′j′
((h, z)− (h′, z′)) =

∑
v∈{0,3}×{0}

nv +
∑

v∈{0,3}×(Si′\{0})

nv +
∑

v∈{2,5}×(z−Sj′ )

nv

= 8p+ 8p+ 4p

= 20p.

We now calculate α. There are seven expressions for (h, z) − Si′j′ depending on whether h is

contained in {0, 3}, {1, 4} or {2, 5}, and whether z is contained in Si′ or Sj′ , or contained in

neither. These are simple to compute and we do not list them. Using Lemma 0.16.2 it is easy to

see that (h,w), where h ∈ {0, 3} and w ∈ (z − Sj′) for z /∈ Si′ , appears 2p times in ∆(Si′j′),

and each member of {2, 5} × Sj′ appears 2p times. The cases where h ∈ {1, 4}, z ∈ Si′ , where

h ∈ {2, 5}, z ∈ Sj′ , and where h ∈ {2, 5}, z ∈ Si′ , are similar to the previous case. We need to

consider the cases where z /∈ Si′ ∪ Sj′ . Notice

∆(Si′j′) = Si′j′S
−1
i′j′ = ({0, 3} × Si′ ∪ {1, 4} × Sj′)({0, 3} × Si′ ∪ {1, 4} × Sj′)

−1

= 2({0, 3}, Si′S
−1
i′ ) + 2({2, 5}, Si′S

−1
j′ ) + 2({1, 4}, Sj′S

−1
i′ ) + 2({0, 3}, Sj′S

−1
j′ )

= 2(({0, 3}, p(Si′ ∪ Sj′)) + ({2, 5}, Si′S
−1
j′ ) + ({1, 4}, Sj′S

−1
i′ ))
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Since Ci ∩ Cj = ∅ for i 6= j and f = p2−1
p+1

is even, we have by Lemma 0.7.1 that

CiC
−1
j = CiCj =

p∑
l=0

(j − i, l − i)Cl =
∑
l 6=i,j

(j − i, l − i)Cl.

Thus, by using the expressions for (h, z)−Si′j′ and Lemma 0.16.1, we can see that, in the case where h ∈ {0, 3}

and z /∈ Si′ ∪ Sj′ , each member of {2, 5} × (z − Sj′) appears twice in ∆(Si′j′), and a member (h,w), where

h ∈ {0, 3} and w ∈ (z − Si′) ∩ Sj′ , appears 2p times. The cases where h ∈ {1, 4}, z /∈ Si′ ∪ Sj′ and where

h ∈ {2, 5}, z /∈ Si′ ∪Sj′ are similar. Thus we can conclude that α =
∑

(h′,z′)∈Si′j′
δSi′j′

((h, z)− (h′, z′)) = 8p.

�

Example 0.16.2. Let p = 3. Let γ be a generator of F32 . Then by Theorem 0.16.2

S1,0 = {(0, 0), (0, γ), (0, γ5), (3, 0), (3, γ), (3, γ5), (1, 0), (1, 1), (1, 2), (4, 0), (4, 1), (4, 2)}

is a (54, 12; 24, 60) partial geometric difference set in Z6 × F32 . By Theorem 0.3.1 this yields a

partial geometric design with parameters (54, 12, 12; 24, 26) whence, via Theorem 0.4.2, a directed

strongly regular graph with parameters (648, 143, 48, 47, 24).

We next construct partial geometric difference sets from planar functions. For a more detailed

introduction to planar functions the reader is referred to [3] and [21].

Let (A,+) and (B,+) be Abelian groups of order n and m respectively. Let f : A→ B be a

function. One measure of the nonlinearity of f is given by Pf = max
06=a∈A

max
b∈B

Pr(f(x+a)−f(x) =

b), where Pr(E) denotes the probability of the event E. The function f is said to have perfect

nonlinearity if Pf = 1
m

. The following lemma gives many examples of perfect nonlinear functions

in finite fields. For a more complete list of the known perfect nonlinear functions, the reader is

referred to Section 1.7 of [21].

Lemma 0.16.3. [3] The power function xs from Fpm to Fpm , where p is an odd prime, has perfect

nonlinearity Pf = 1
pm

for the following values of s:

1. s = 2,

2. s = pk + 1, where m/gcd(m, k) is odd,

3. s = (3k + 1)/2, where p = 3, k is odd, and gcd(m, k) = 1.
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We will use the following lemma.

Lemma 0.16.4. [3] Let f be a function from an Abelian group (A,+) of order n to another Abelian

group (B,+) of order n with perfect nonlinearity Pf = 1
n

. Define Cb = {x ∈ A | f(x) = b} and

C =
⋃
b∈B{b} × Cb ⊂ B × A. Then

|C ∩ (C + (w1, w2))| =


n, if (w1, w2) = (0, 0),

0, if w1 6= 0, w2 = 0,

1, otherwise.

The following is a construction.

Theorem 0.16.3. Let f be a function from an Abelian group (A,+) of order n to another Abelian

group (B,+) of order n with perfect nonlinearity Pf = 1
n

. Define Cb = {x ∈ A | f(x) = b}

and C =
⋃
b∈B{b} × Cb ⊂ B × A. Then C is a partial geometric difference set in A × B with

parameters (n2, n;n− 1, 2n− 1).

Proof: Suppose (h, z) ∈ C. Then we have

β = (h, z)− C =
⋃
b∈B

{h− b} × (z − Cb)

=
⋃
b∈B

{h− b} × {z − x | z, x ∈ A, f(x) = b}.

Denote the number of occurrences of u in ∆(C) by nu. Define V1 =
⋃
b∈B\{h}{h − b} × {0} and

V2 =
⋃
b∈B{h− b} × {z − x | x, z ∈ A, z 6= x, f(x) = b}. Then, using Lemma 0.16.4, we have∑

(h′,z′)∈C

δ((h, z)− (h′, z′)) = n(0,0) +
∑
v∈V1

nv +
∑
v∈V2

nv

= n+ 0 + (n− 1)

= 2n− 1.

Now suppose (h, z) /∈ C. Define U =
⋃
b∈B\{f(0)}{h − b} × {z − x | x ∈ A, f(x) = b}. Then,
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using Lemma 0.16.4, we have

α =
∑

(h′,z′)∈C

δ((h, z)− (h′, z′)) = n(h−f(0),0) +
∑
v∈U

nv

= 0 + (n− 1)

= n− 1.

�

Corollary 0.16.1. Let f(x) = xs be a function from Fpm to Fpm , where p is an odd prime. Define

Cb = {x ∈ Fpm | f(x) = b} and C =
⋃
b∈Fpm

{b} × Cb ⊂ Fpm × Fpm . If:

1. s = 2,

2. s = pk + 1, where m/gcd(m, k) is odd, or

3. s = (3k + 1)/2, where p = 3, k is odd, and gcd(m, k) = 1.

Then (Fpm × Fpm , Dev(C)) is a partial geometric difference set with parameters (p2m, pm; pm −

1, 2pm − 1).

Example 0.16.3. Let p = 3 and m = 2. Let f(x) = x2. The set C =
⋃
b∈F32
{b} × Cb is given by

{(0, 0), (1, 1), (1, 2), (2, γ6), (γ2, γ5), (γ6, γ7), (γ2, γ), (γ6, γ3), (2, γ2)}

and by Corollary 0.16.1 is a (81, 9; 8, 17) partial geometric difference set in F32×F32 . By Theorem

0.3.1 this yields a partial geometric design with parameters (81, 9, 9; 0, 8) whence, via Theorem

0.4.2, a directed strongly regular graph with parameters (729, 80, 24, 23, 0).

Remark 0.16.1. Interestingly, the partial geometric difference sets constructed in Theorem 0.16.3

are almost difference sets [3] and so correspond to planar 2-adesigns (see Section 0.18). Con-

sequently these partial geometric difference sets must also satisfy the condition in Lemma 22 of

[39], where Nowak et al. investigated when an almost difference set is partial geometric.

In [39], partial geometric difference families in groups G = Zn where n = 4l for some

positive integer l were constructed. We close this section by further generalizing this idea. The

proof is a simple counting exercise, and so is omitted.
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Theorem 0.16.4. Let G = Z2 × Zn where n = 4l for some positive integer l. Let H = 〈4〉 be the

unique subgroup of Zn of order l. Define H+ i = {z+ i | z ∈ H} = {x ∈ Zn | x ≡ i(mod 4)} for

i = 0, 1, 2, 3 (i.e. the cosets of H in Zn). Then both {0} × (H ∪ (H + 1)) ∪ {1} × (H ∪ (H + 3))

and {1} × (H ∪ (H + 1)) ∪ {0} × (H ∪ (H + 3)) are partial geometric difference sets in G with

parameters (8l, 4l; 6l2, 10l2).

Example 0.16.4. With G = Z2 × Z12 and H = 〈4〉 the unique subgroup of Z12 of order 3, by

Theorem 0.16.4 we have that the set {0} × (H ∪ (H + 1))∪ {1} × (H ∪ (H + 3)), which is given

by

{(0, 0), (0, 1), (0, 4), (0, 5), (0, 8), (0, 9), (1, 0), (1, 3), (1, 4), (1, 7), (1, 8), (1, 11)},

is a (24, 12; 54, 90) partial geometric difference set. By Theorem 0.3.1 this yields a partial geo-

metric design with parameters (24, 12, 12; 54, 45) whence, via Theorem 0.4.2, a directed strongly

regular graph with parameters (288, 143, 67, 66, 54).

We next discuss some new partial geometric difference families.

0.17 New Partial Geometric Difference Families

We begin with the following construction.

Theorem 0.17.1. Let n = pu where p is an odd prime and u ≥ 2 is an integer. Let S =

{0, 1, ..., pu−1−1} and, for l = 0, 1, ..., pu−1, define Sl = (pl−1)S = {0, pl−1, 2pl−2, ..., (pu−1−

1)pl− (pu−1− 1)}. Then S = {Sl | l = 1, 2, ..., pu−1} is a partial geometric difference family with

parameters (pu, pu−1, pu−1; (pu−1 − 1)pu−1pu−2, pu + (pu−1 − 1)pu−1pu−2).

Proof: We will use the following property, which is easily seen to hold:

The members ± (pl − 1),±(2pl − 2), ...,±(pu−1 − 1)pl − (pu−1 − 1) each appear

in the multiset ∆(Sl) with multiplicities pu−1−1, pu−1−2, ..., 1 respectively.

(0-13)

Also note that for s ∈ S we have that ±s(pl − 1) ≡ ∓(pu−1 − s)(pl − 1)(mod pu−1) for each l,

l = 0, 1, ..., pu−1.
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Claim: For each s ∈ S, the equation s(pl − 1) ≡ υ(mod pu) has pu−2 solutions (s, l) for s, l ∈

{0, 1, ..., pu−1}.

Proof of Claim: Notice if pl − 1 ≡ υ(mod pu) we have s(p(l + ω)− 1) ≡ υ(mod pu) if and only

if

sυ + spω ≡ υ(mod pu). (0-14)

We can see that (0-14) holds if and only if s ≡ 1(mod p). We know that (s, ω) = (1, 0) is a

solution. Now set s = 1 + p and ω = pl′ + 1 for some l′ ∈ {0, ..., pu−1}. Then we have

(p+ 1)(pl − 1) + (p+ 1)(pl′ + 1)p = pl − 1 ⇔ pυ + (p2l′ + p+ pl′ + 1)p = 0

⇔ p(pl − 1) + p2(1 + l′) + p = 0

⇔ p2(l + l′ + 1) = 0

⇔ l + l′ + 1 ≡ p(mod pu−1).

Thus we can choose ω = pl′+ 1 where l′ ≡ −l− 1(mod pu−1) and we have a solution. Since there

are pu−2 such solutions, the claim is proved.

Thus we have that each element of Zpu not congruent to 0(mod pu−1) appears in Sl for pu−2

different values of l. Since 0 appears pu times in the multiset
⊔pu−1
l=1 ∆(Sl), and by (0-13), we must

have that if x ∈ Sl for some l then

β =
∑
y∈Sl

∑
l

δSl
(x− y) = pu +

∑
l

∑
y∈Sl,x 6=y

pu−2pu−1

= pu + (pu−1 − 1)pu−2pu−1. (since each Sl contains 0)

Now notice that if we reduce the elements of Sl modulo pu−1 we get the set S = S0. It follows then

that for any Sl, and any x /∈ Sl, the set x − Sl contains exactly one member congruent to 0(mod

pu−1). Then we have that if x /∈ Sl for all l, then

α =
∑
y∈Sl

∑
l

δSl
(x− y) =

∑
l

∑
y∈Sl,x 6≡y(mod pu−1)

pu−2pu−1

= (pu−1 − 1)pu−2pu−1.

�

Example 0.17.1. Let p = 5 and u = 2 so that n = 25 and S = {0, 1, 2, 3, 4} ⊂ Z25. Then by

Theorem 0.17.1 we have that S = {Sl | l = 1, 2, ..., 5}, which is given by

{{0, 4, 8, 12, 16}, {0, 2, 9, 11, 18}, {0, 3, 6, 14, 17}, {0, 1, 7, 13, 19}, {0, 21, 22, 23, 24}},
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is a (25, 5, 5; 20, 45) partial geometric difference family in Z25. By Theorem 0.3.1 this yields a

partial geometric design with parameters (25, 5, 25; 20, 16) whence, via Theorem 0.4.2, a directed

strongly regular graph with parameters (625, 124, 44, 43, 20).

Our next two constructions further generalize Theorem 0.16.1.

Theorem 0.17.2. Let p be a prime, and for each i ∈ {0, 1, ..., p} let Si = Ci ∪ {0} where Ci is

the ith cyclotomic class of order p + 1 in Fp2 . Let I ⊂ {0, 1, ..., p} such that |I| = 2κ for some

positive integer κ. Say I = {i1, ..., i2κ}, and define Θ0 to be the set of all pairs (i, j) ∈ I × I such

that i 6= j and each member of I appears in exactly one ordered pair. Let m be a positive, even

integer. Define Ωl = l + {0, 2, ...,m − 2} ⊂ Zm for l = 0, 1, and for each (i′, j′) ∈ Θ0 define

Si′j′ = Ω0 × Si′ ∪ Ω1 × Sj′ ⊂ Zm × Fp2 . Then S = {Si′j′ | (i′, j′) ∈ Θ0} is a partial geometric

difference family with parameters (mp2,mp, κ;κ3
4
m2p, (m

2
)2p(p+ 3) + (κ− 1)3

4
m2p).

Proof: We have already established in Theorem 0.16.1 that if (h, z) ∈ Si′j′ then∑
(h′,z′)∈Si′j′

δSi′j′
((h, z)− (h′, z′)) = (

m

2
)2p(p+ 3), (0-15)

and if (h, z) /∈ Si′j′ then ∑
(h′,z′)∈Si′j′

δSi′j′
((h, z)− (h′, z′)) =

3

4
m2p. (0-16)

Now let (h, z) ∈ Si′j′ for some (i′, j′) ∈ Θ0. Let (i, j) ∈ Θ0 such that (i, j) 6= (i′, j′). Denote the

number of occurrences of u in ∆(Sij) by nu. Using Equation (0-11) we have∑
(h′,z′)∈Si′j′

δ((h, z)− (h′, z′)) = 4(
m

2
)2p. (0-17)

Then, using Equations (0-15), (0-16) and (0-17), we have

β =
∑

(h,z)∈Si′j′

∑
(i,j)∈Θ0

δSij
((h1, z1)− (h, z)) = (

m

2
)2p(p+ 3) + (κ− 1)4(

m

2
)2p,

and if (h, z) /∈ Si′j′ we have

α =
∑

(h,z)∈Si′j′

∑
(i,j)∈Θ0

δSij
((h1, z1)− (h, z)) =

3

4
m2p+ (κ− 1)4(

m

2
)2p.

�

46



úô�ÆÆ¬Æ Ø© CHAPTER 4. PARTIAL GEOMETRIC DIFFERENCE FAMILIES

Example 0.17.2. Let p = 5, m = 4, I = {0, 1, 2, 3}, and Θ = {(1, 0), (2, 3)}. Then Θ satisfies the

condition in Theorem 0.17.2. Let γ be a generator of F∗52 . Then S = {S1,0, S2,3}, where

S1,0 = {(0, 0), (0, γ), (0, γ7), (0, γ13), (0, γ19), (2, 0), (2, γ), (2, γ7), (2, γ13),

(2, γ19), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)},

and

S2,3 = {(0, 0), (0, γ2)(0, γ8), (0, γ14), (0, γ20), (2, 0), (2, γ2), (2, γ8), (2, γ14), (2, γ20),

(1, 0), (1, γ3), (1, γ9), (1, γ15), (1, γ21), (3, 0), (3, γ3), (3, γ9), (3, γ15), (3, γ21)},

is a (100, 20, 2; 140, 240) partial geometric difference family in Z4 × F52 . By Theorem 0.3.1 this

yields a partial geometric design with parameters (100, 20, 40; 140, 162) whence, via Theorem

0.4.2, a directed strongly regular graph with parameters (2000, 799, 220, 219, 140).

The proofs of the following corollaries are omitted as they use simple counting principals

similar to those used in the proof of Theorem 0.17.2.

Corollary 0.17.1. Let p be a prime, and for each i ∈ {0, 1, ..., p} let Si = Ci ∪{0} where Ci is the

ith cyclotomic class of order p+ 1 in Fp2 . Let I ⊂ {0, 1, ..., p} such that |I| = 2κ for some positive

integer κ. Say I = {i1, ..., i2κ}, and define Θ1 = {(i2κ, i1), (i1, i2), (i2, i3), ..., (i2κ−1, i2κ)}. Let m

be a positive integer. Define Σl = l+{0, 2, ...,m−2} ⊂ Zm for l = 0, 1, and for each (i′, j′) ∈ Θ1

define Si′j′ = Ω0 × Si′ ∪ Ω1 × Sj′ ⊂ Zm × Fp2 . Then S = {Si′j′ | (i′, j′) ∈ Θ1} is a partial

geometric difference family with parameters (mp2,mp, 2κ; 3
4
m2p + (2κ − 1)4(m

2
)2p, (m

2
)2p(p +

3) + (2κ− 1)4(m
2

)2p).

Corollary 0.17.2. Let p be a prime, and for each i ∈ {0, 1, ..., p} let Si = Ci ∪{0} where Ci is the

ith cyclotomic class of order p + 1 in Fp2 . Let the integer κ and Θe, for e = 0 resp. 1, be defined

as in Theorem 0.17.2 resp. Corollary 0.17.1. For each (i′, j′) ∈ Θe define Sei′j′ = {0, 3} × Si′ ∪

{1, 4}×Sj′ ⊂ Z6×Fp2 for e = 0, 1, and Se = {Sei′j′ | (i′, j′) ∈ Θe}. Then S0 resp. S1 is a partial

geometric difference family with parameters (6p2, 4p, κ; 8p+ (κ− 1)12p, 20p+ (κ− 1)12p) resp.

(6p2, 4p, 2κ; 8p+ (2κ− 1)12p, 20p+ (2κ− 1)12p).

We close this section with the following construction.
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Theorem 0.17.3. Let G be an Abelian group of odd composite order n. Let H be a proper, non-

trivial subgroup of G of order m, and set κ = n/m−1
2

. Suppose that g1, ..., gκ ∈ G are such that

{H ± gi | 1 ≤ i ≤ κ} is a partition of G \H . Then S = {H ∪ (H + gi) | 1 ≤ i ≤ κ} is a partial

geometric difference family with parameters (n, 2m,κ; 2(n−m)m, 3(n−m)m).

Proof: If g ∈ H ∪ (H + gi′) for some fixed i′ ∈ {1, ..., κ} then

g− (H ∪ (H + gi′)) = (H + g)∪ (H + (g− gi′)) =

(H + gi′) ∪H, if g ∈ H + gi′ ,

H ∪ (H − gi′), otherwise.
(0-18)

If g /∈ H ∪ (H + gi′), then

g − (H ∪ (H + gi′)) = (H + g) ∪ (H + (g − gi′)) (0-19)

where H + g and H + (g − gi′) are distinct members of {H ± gi | 1 ≤ i ≤ κ}. Also notice that,

for fixed i′ ∈ {1, ..., κ}, we have

∆(H ∪ (H + gi′)) = (H ∪ (H + gi′))(H ∪ (H + gi′))
−1

= 2HH−1 +H(H + gi′)
−1 + (H + gi′)H

−1

= 2mH +m(H − gi′) +m(H + gi′). (0-20)

Let nu denote the number of occurrences of u in ∆(S) =
⊔κ
i=1 ∆(H ∪ (H + gi)). Then, using

(0-18) and (0-20), if g ∈ H ∪ (H + gi′) we have

β =
∑

g′∈H∪(H+gi′ )

κ∑
i=1

δH∪(H+gi)(g − g′) = 2κ|H|+m|H + gi|+m|H − gi| = 3(n−m)m,

and using (0-19) and (0-20), if g /∈ S we have

α =
∑

g′∈H∪(H+gi)

κ∑
i=1

δH∪(H+gi)(g − g′) = 2κm2 = 2(n−m)m.

�

Example 0.17.3. Let G = Z15 and H = 〈3〉 ≤ G. Then by Theorem 0.17.3 we have that S =

{H ∪ (H + 1), H ∪ (H − 1)} is a (15, 10, 2; 100, 150) partial geometric difference family in G. By

Theorem 0.3.1 this yields a partial geometric design with parameters (15, 10, 20; 100, 40) whence,

via Theorem 0.4.2, a directed strongly regular graph with parameters (300, 199, 68, 67, 100).
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Table 0-3 Parameters of partial geometric difference sets constructed in this paper.

Reference (v, k;α, β) Group Information

Theorem 0.16.1 (mp2,mp; 3
4
m2p, (m

2
)2p(p+ 3)) Zm × Fp2 m even, p an odd prime

Theorem 0.16.2 (6p2, 4p; 8p, 20p) Z6 × Fp2 p an odd prime

Theorem 0.16.3 (n2, n;n− 1, 2n− 1)∗
A×B

(generic) A,B both Abelian groups of order n

Theorem 0.16.4 (8l, 4l; 10l2, 6l2) Z2 × Zn n = 4l for positive integer l

*: This partial geometric difference set is an almost difference set and corresponds to a planar 2-adesign (see Section 0.18).

Table 0-4 Parameters of partial geometric difference families constructed in this paper.

Reference (v, k, n;α, β) Group Information

Theorem 0.17.1

(pu, pu−1, pu−1;α, β)

α = (P u−1 − 1)pu−1pu−2

β = pu + (pu−1 − 1)pu−1pu−2 Zpu

p an odd prime,
u ≥ 2 an integer

Theorem 0.17.2
(mp2,mp, κ;κ 3

4
m2p, (m

2
)2p(p+ 3) + (κ− 1) 3

4
m2p)

1 ≤ κ ≤ p+1
2

Zm × Fp2

m even,
p an odd prime

Corollary 0.17.1

(mp2,mp, 2κ;α, β)

α = 3
4
m2p+ (2κ− 1)4(m

2
)2p

β = (m
2

)2p(p+ 3) + (2κ− 1)4(m
2

)2p

1 ≤ κ ≤ p+1
2

Zm × Fp2

m even,
p an odd prime

Corollary 0.17.2
(6p2, 4p, κ; 8p+ (κ− 1)12p, 20p+ (κ− 1)12p)

1 ≤ κ ≤ p+1
2

Z6 × Fp2 p an odd prime

Corollary 0.17.2
(6p2, 4p, 2κ; 8p+ (2κ− 1)12p, 20p+ (2κ− 1)12p)

1 ≤ κ ≤ p+1
2

Z6 × Fp2 p an odd prime

Theorem 0.17.3

(n, 2m,κ; 2(n−m)m, 3(n−m)m)

κ = n/m−1
2

G
(generic)

G Abelian of odd,
composite order
n with m|n

The following table accounts for the directed strongly regular graphs with less than 110 vertices

constructed in this paper. We provide the parameters of the directed strongly regular graphs, the

theorem in this paper by which it is constructed, as well as the references of other works in which

the parameters have previously appeared.
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Table 0-5 Parameters of directed strongly regular graphs with less than 110 vertices constructed in this paper.

(v, k, t, λ, µ) Ref. in this paper Information Param. appear in

(27, 8, 4, 3, 2) Corollary 0.16.1 p = 3,m = 1, f(x) = x2 [2], [26]

(32, 15, 9, 8, 6) Theorem 0.16.4 l = 1 [25]

(48, 31, 23, 22, 16) Theorem 0.17.3 G = Z6, H = 〈3〉 [25], [26], [44]

(81, 26, 14, 13, 6) Theorem 0.17.1 p = 3, u = 2 [25]

(108, 35, 17, 16, 9) Theorem 0.16.1 p = 3,m = 2 [26], [44]

0.18 Partial Geometric Designs, Adesigns, and Their Links

We first discuss an important connection between partial geometric designs and tactical con-

figurations that have exactly two indices, i.e., tactical configurations (V,B) where there are integers

µ1 6= µ2 such that for any pair of distinct points x, y ∈ V , rxy ∈ {µ1, µ2}. IfA is the v×b incidence

matrix of a tactical configuration (V,B) with v points, b blocks, and the two indices µ1 6= µ2, then

we will denote by A1 the symmetric matrix whose (i, j)th entry is 1 if the points corresponding to

the ith and jth rows of A are contained in exactly µ1 blocks, and is 0 otherwise. We will need the

following lemma.

Lemma 0.18.1. [37] An incidence structure (V,B) is a partial geometric design with parameters

(v, k, r;α′, β′) if and only if its incidence matrix A satisfies

AJ = rJ, JA = kJ and AATA = n′A+ α′J,

where n′ = r + k + β′ − α′ − 1.

Suppose (V,B) is a partial geometric design with parameters (v, k, r;α′, β′) and the two in-

dices µ1 6= µ2. Let A be the incidence matrix of (V,B). It is easy to see that A satisfies

AAT = rI + µ1A1 + µ2(J − A1 − I). (0-21)
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Since (V,B) is partial geometric, by Lemma 0.18.1 we have that A also satisfies

n′A+ α′J = AATA = (r − µ2)A+ (µ1 − µ2)A1A+ µ2kJ. (0-22)

Then, using (0-21) and (0-22), we must have that A1A = νA + ζ(J − A) for some integers ν and

ζ . Moreover we must have n′ + α′ = r − µ2 + ν and α′ = ζ + µ2k. This means that, for each pair

(x, b) ∈ V × B, we have

|{y ∈ b | y 6= x, rxy = µ1}| =

ν (= n′ + α′ − r + µ2), if x ∈ b,

ζ (= α′ − µ2k), otherwise.
(0-23)

Note that condition (0-23) is necessary and sufficient.

Now set σ = r−µ2, φ = µ1−µ2 and ψ = ν− ζ . Then we can write AAT = σI+φA1 +µ2J

and A1A = ψA+ ζJ . By Lemma 0.18.1, and since A1 is symmetric, we have

krJ = AATJ = ψA1J + σJ + µ2kJ = JAAT .

Then, after some simple arithmetic, we can get

A1J = JA1 = κJ (0-24)

where κ = (k−1)r+µ2(1−v)
µ1−µ2 . Now set ε = ζr − µ2(κ− ψ). Then we have

(ψA+ ζJ)AT = A1AA
T = φA2

1 + σA1 + µ2κJ ⇔ φA2
1 + σA1 − ψφA1 + ψσI = εJ

⇔ A2
1 = k′I + aA1 + b(J − I − A1),

(0-25)

where k′ = κ = ε−ψσ
φ
, a = ε+ψφ−σ

φ
and b = ε

φ
are integers (note that k′ = κ follows from (0-24)).

From (0-24) and (0-25) it is clear that A1 is the adjacency matrix of a strongly regular graph with

parameters (v, k′, a, b) (see Subsection 0.4). We have thus shown the following.

Lemma 0.18.2. A tactical configuration with the two indices µ1 6= µ2 and incidence matrix A is

partial geometric with parameters (v, k, r;α′, β′) if and only if there are integers ν and ζ such that

for each pair (x, b) ∈ V × B,

|{y ∈ b | y 6= x, rxy = µ1}| =

ν (= n′ + α′ − r + µ2), if x ∈ b,

ζ (= α′ − µ2k), otherwise,

and A1 is the adjacency matrix of a strongly regular graph with parameters (v, k′, a, b) where

k′ = ε−ψσ
φ
, a = ε+ψφ−σ

φ
and b = ε

φ
. Moreover, k′ = (k−1)r+µ2(1−v)

µ1−µ2 .
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It is interesting that Condition (0-23), when combined with (0-21), leads to the strongly reg-

ular graph described by (0-25). We can see that Lemma 0.18.2 describes a special class of block

designs that have two indices. We now discuss a particular subclass of these block designs.

A tactical configuration (V,B) with the two indices µ1 and µ2 such that µ1 − µ2 = 1 is

called a 2-adesign. Adesigns were were recently introduced in [21], and reported on in [24] and

[35], where several constructions are given, and codes generated by the incidence matrices are

computed.

Theorem 0.18.1. A 2-(v, k, λ) adesign with incidence matrix A is partial geometric with parame-

ters (v, k, r;α′, β′) if and only if there are integers ν and ζ such that for each pair (x, b) ∈ V ×B,

|{y ∈ b | y 6= x, rxy = µ1}| =

ν (= n′ + α′ − r + λ), if x ∈ b,

ζ (= α′ − λk), otherwise,

and A1 is the adjacency matrix of a strongly regular graph with parameters (v, k′, a, b) where

k′ = ε − ψσ, a = ε + ψ − σ and b = ε. Moreover, the following relations hold: σ = r − λ, ψ =

n′ − r + λ(k + 1), ε = λ2v + λ(k + r − 2kr + β′ − α′ − 1) + α′r and k′ = (k − 1)r + λ(1− v).

We can see that Theorem 0.18.1 describes a special class of 2-adesigns. There seem to be

even fewer examples of these, and the few examples we can find have long since been discovered.

Example 0.18.1. Partial geometries in which not every pair of points is contained in a line is one

obvious example. It is clear that partial geometries satisfy the condition given in Lemma 0.18.1,

and that we will have every pair of points contained either in one line, or in no line [7]. Partial

geometries have extensive applications in combinatorics and information theory.

Example 0.18.2. Let (V,B) be a quasi-symmetric design with intersection numbers s1 and s2 such

that s2 − s1 = 1. Several families of such quasi-symmetric designs are known to exist [45]. It is

well-known that the dual of any balanced incomplete block design is a partial geometric design

[41]. Then the dual (V,B)⊥ of (V,B) is a partial geometric 2-adesign.

Example 0.18.3. Let p be an odd prime. Let Dp+1
i denote the ith cyclotomic class or order p + 1

in Fp2 . It was shown in [39] that (Fp2 , Dev(Dp+1
i )) is a partial geometric design. It is easy to see
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that (Fp2 , Dev(Dp+1
i )) has the two indices µ1 = 1 and µ2 = 0 (see [38]). Then (Fp2 , Dev(Dp+1

i ))

is a symmetric partial geometric 2-adesign.

Example 0.18.4. Let C be the partial geometric difference set from Theorem 0.16.3 in the Abelian

group A×B of order n2. Then (A×B,Dev(C)) is a partial geometric design, and it was shown

in [3] that (A×B,Dev(C)) has the two indices µ1 = 1 and µ2 = 0. Then (A×B,Dev(C)) is a

symmetric partial geometric 2-adesign.

0.19 Concluding Remarks

We have constructed several families of partial geometric difference sets and partial geometric

difference families whose parameters are recorded in Table 0-3 and Table 0-4 respectively. These

families have new parameters and so give directed strongly regular graphs with new parameters.

We discussed some links between partially balanced designs, 2-adesigns, and partial geometric

designs and made an investigation into when a 2-adesign is partial geometric. The condition noted

in Lemma 0.18.2 seems surprisingly strong, and describes a special class of partial geometric

designs that correspond (via (0-25)) to strongly regular graphs. The condition noted in Theorem

0.18.1 is also strong and describes a special class of 2-adesigns.
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